Qrack  1.7
General classical-emulating-quantum development framework
Public Member Functions | Protected Member Functions | Protected Attributes | Static Protected Attributes | List of all members
Qrack::QEngineOCL Class Reference

OpenCL enhanced QEngineCPU implementation. More...

#include <qengine_opencl.hpp>

Inheritance diagram for Qrack::QEngineOCL:
Inheritance graph
[legend]
Collaboration diagram for Qrack::QEngineOCL:
Collaboration graph
[legend]

Public Member Functions

 QEngineOCL (bitLenInt qBitCount, bitCapInt initState, std::shared_ptr< std::default_random_engine > rgp=nullptr, int devID=-1, bool partialInit=false, complex phaseFac=complex(-999.0,-999.0))
 Initialize a Qrack::QEngineOCL object. More...
 
 QEngineOCL (QEngineOCLPtr toCopy)
 
 ~QEngineOCL ()
 
virtual void SetQubitCount (bitLenInt qb)
 
virtual void EnableNormalize (bool doN)
 
virtual real1 GetNorm (bool update=true)
 
virtual void SetNorm (real1 n)
 
virtual void LockSync (cl_int flags=(CL_MAP_READ|CL_MAP_WRITE))
 
virtual void UnlockSync ()
 
virtual void Sync ()
 
virtual complexGetStateVector ()
 
virtual cl::Context & GetCLContext ()
 
virtual int GetCLContextID ()
 
virtual cl::CommandQueue & GetCLQueue ()
 
virtual BufferPtr GetStateBuffer ()
 
virtual void SetPermutation (bitCapInt perm)
 Set to a specific permutation. More...
 
virtual void CopyState (QInterfacePtr orig)
 Direct copy of raw state vector to produce a clone. More...
 
virtual real1 ProbAll (bitCapInt fullRegister)
 Direct measure of full register probability to be in permutation state. More...
 
virtual void X (bitLenInt start, bitLenInt length)
 Bitwise Pauli X (or logical "NOT") operator. More...
 
virtual void Swap (bitLenInt start1, bitLenInt start2, bitLenInt length)
 Bitwise swap. More...
 
virtual bitLenInt Cohere (QEngineOCLPtr toCopy)
 
virtual bitLenInt Cohere (QInterfacePtr toCopy)
 Combine another QInterface with this one, after the last bit index of this one. More...
 
virtual void Decohere (bitLenInt start, bitLenInt length, QInterfacePtr dest)
 Minimally decohere a set of contiguous bits from the full coherent unit, into "destination.". More...
 
virtual void Dispose (bitLenInt start, bitLenInt length)
 Minimally decohere a set of contigious bits from the full coherent unit, throwing these qubits away. More...
 
virtual void ROL (bitLenInt shift, bitLenInt start, bitLenInt length)
 "Circular shift left" - shift bits left, and carry last bits. More...
 
virtual void ROR (bitLenInt shift, bitLenInt start, bitLenInt length)
 "Circular shift right" - shift bits right, and carry first bits. More...
 
virtual void INC (bitCapInt toAdd, bitLenInt start, bitLenInt length)
 Increment integer (without sign, with carry) More...
 
virtual void DEC (bitCapInt toSub, bitLenInt start, bitLenInt length)
 Subtract integer (without sign, with carry) More...
 
virtual void INCC (bitCapInt toAdd, bitLenInt start, bitLenInt length, bitLenInt carryIndex)
 Increment integer (without sign, with carry) More...
 
virtual void DECC (bitCapInt toSub, bitLenInt start, bitLenInt length, bitLenInt carryIndex)
 Subtract integer (without sign, with carry) More...
 
virtual void INCS (bitCapInt toAdd, bitLenInt start, bitLenInt length, bitLenInt carryIndex)
 Increment integer (without sign, with carry) More...
 
virtual void DECS (bitCapInt toSub, bitLenInt start, bitLenInt length, bitLenInt carryIndex)
 Subtract integer (without sign, with carry) More...
 
virtual void INCSC (bitCapInt toAdd, bitLenInt start, bitLenInt length, bitLenInt overflowIndex, bitLenInt carryIndex)
 Increment integer (with sign, with carry) More...
 
virtual void DECSC (bitCapInt toAdd, bitLenInt start, bitLenInt length, bitLenInt overflowIndex, bitLenInt carryIndex)
 Subtract integer (with sign, with carry) More...
 
virtual void INCSC (bitCapInt toAdd, bitLenInt start, bitLenInt length, bitLenInt carryIndex)
 Increment integer (with sign, with carry) More...
 
virtual void DECSC (bitCapInt toAdd, bitLenInt start, bitLenInt length, bitLenInt carryIndex)
 Subtract integer (with sign, with carry) More...
 
virtual void INCBCD (bitCapInt toAdd, bitLenInt start, bitLenInt length)
 Increment integer (BCD) More...
 
virtual void DECBCD (bitCapInt toAdd, bitLenInt start, bitLenInt length)
 Subtract integer (BCD) More...
 
virtual void INCBCDC (bitCapInt toAdd, bitLenInt start, bitLenInt length, bitLenInt carryIndex)
 Increment integer (BCD, with carry) More...
 
virtual void DECBCDC (bitCapInt toSub, bitLenInt start, bitLenInt length, bitLenInt carryIndex)
 Subtract integer (BCD, with carry) More...
 
virtual void MUL (bitCapInt toMul, bitLenInt inOutStart, bitLenInt carryStart, bitLenInt length, bool clearCary=false)
 Multiply by integer. More...
 
virtual void DIV (bitCapInt toDiv, bitLenInt inOutStart, bitLenInt carryStart, bitLenInt length)
 Divide by integer. More...
 
virtual void CMUL (bitCapInt toMul, bitLenInt inOutStart, bitLenInt carryStart, bitLenInt controlBit, bitLenInt length, bool clearCarry=false)
 Controlled multiplication by integer. More...
 
virtual void CDIV (bitCapInt toDiv, bitLenInt inOutStart, bitLenInt carryStart, bitLenInt controlBit, bitLenInt length)
 Controlled division by integer. More...
 
virtual bitCapInt IndexedLDA (bitLenInt indexStart, bitLenInt indexLength, bitLenInt valueStart, bitLenInt valueLength, unsigned char *values, bool isParallel)
 Set 8 bit register bits based on read from classical memory. More...
 
virtual bitCapInt IndexedLDA (bitLenInt indexStart, bitLenInt indexLength, bitLenInt valueStart, bitLenInt valueLength, unsigned char *values)
 Set 8 bit register bits by a superposed index-offset-based read from classical memory. More...
 
virtual bitCapInt IndexedADC (bitLenInt indexStart, bitLenInt indexLength, bitLenInt valueStart, bitLenInt valueLength, bitLenInt carryIndex, unsigned char *values, bool isParallel)
 Add based on an indexed load from classical memory. More...
 
virtual bitCapInt IndexedADC (bitLenInt indexStart, bitLenInt indexLength, bitLenInt valueStart, bitLenInt valueLength, bitLenInt carryIndex, unsigned char *values)
 Add to entangled 8 bit register state with a superposed index-offset-based read from classical memory. More...
 
virtual bitCapInt IndexedSBC (bitLenInt indexStart, bitLenInt indexLength, bitLenInt valueStart, bitLenInt valueLength, bitLenInt carryIndex, unsigned char *values, bool isParallel)
 Subtract based on an indexed load from classical memory. More...
 
virtual bitCapInt IndexedSBC (bitLenInt indexStart, bitLenInt indexLength, bitLenInt valueStart, bitLenInt valueLength, bitLenInt carryIndex, unsigned char *values)
 Subtract from an entangled 8 bit register state with a superposed index-offset-based read from classical memory. More...
 
virtual real1 Prob (bitLenInt qubit)
 PSEUDO-QUANTUM Direct measure of bit probability to be in |1> state. More...
 
virtual void PhaseFlip ()
 Phase flip always - equivalent to Z X Z X on any bit in the QInterface. More...
 
virtual void ZeroPhaseFlip (bitLenInt start, bitLenInt length)
 For chips with a zero flag, flip the phase of the state where the register equals zero. More...
 
virtual void CPhaseFlipIfLess (bitCapInt greaterPerm, bitLenInt start, bitLenInt length, bitLenInt flagIndex)
 The 6502 uses its carry flag also as a greater-than/less-than flag, for the CMP operation. More...
 
virtual int GetDeviceID ()
 
virtual void SetDevice (const int &dID, const bool &forceReInit=false)
 
virtual void SetQuantumState (complex *inputState)
 Set arbitrary pure quantum state, in unsigned int permutation basis. More...
 
virtual void NormalizeState (real1 nrm=-999.0)
 
virtual void UpdateRunningNorm ()
 
- Public Member Functions inherited from Qrack::QInterface
 QInterface (bitLenInt n, std::shared_ptr< std::default_random_engine > rgp=nullptr, bool doNorm=true)
 
virtual ~QInterface ()
 Destructor of QInterface. More...
 
int GetQubitCount ()
 Get the count of bits in this register. More...
 
int GetMaxQPower ()
 Get the maximum number of basis states, namely $ n^2 $ for $ n $ qubits. More...
 
virtual std::map< QInterfacePtr, bitLenIntCohere (std::vector< QInterfacePtr > toCopy)
 
virtual void ApplySingleBit (const complex *mtrx, bool doCalcNorm, bitLenInt qubitIndex)
 Apply an arbitrary single bit unitary transformation. More...
 
virtual void CCNOT (bitLenInt control1, bitLenInt control2, bitLenInt target)
 Doubly-controlled NOT gate. More...
 
virtual void AntiCCNOT (bitLenInt control1, bitLenInt control2, bitLenInt target)
 Anti doubly-controlled NOT gate. More...
 
virtual void CNOT (bitLenInt control, bitLenInt target)
 Controlled NOT gate. More...
 
virtual void AntiCNOT (bitLenInt control, bitLenInt target)
 Anti controlled NOT gate. More...
 
virtual void H (bitLenInt qubitIndex)
 Hadamard gate. More...
 
virtual bool M (bitLenInt qubitIndex)
 Measurement gate. More...
 
virtual void X (bitLenInt qubitIndex)
 X gate. More...
 
virtual void Y (bitLenInt qubitIndex)
 Y gate. More...
 
virtual void Z (bitLenInt qubitIndex)
 Z gate. More...
 
virtual void CY (bitLenInt control, bitLenInt target)
 Controlled Y gate. More...
 
virtual void CZ (bitLenInt control, bitLenInt target)
 Controlled Z gate. More...
 
virtual void AND (bitLenInt inputBit1, bitLenInt inputBit2, bitLenInt outputBit)
 Quantum analog of classical "AND" gate. More...
 
virtual void OR (bitLenInt inputBit1, bitLenInt inputBit2, bitLenInt outputBit)
 Quantum analog of classical "OR" gate. More...
 
virtual void XOR (bitLenInt inputBit1, bitLenInt inputBit2, bitLenInt outputBit)
 Quantum analog of classical "XOR" gate. More...
 
virtual void CLAND (bitLenInt inputQBit, bool inputClassicalBit, bitLenInt outputBit)
 Quantum analog of classical "AND" gate. More...
 
virtual void CLOR (bitLenInt inputQBit, bool inputClassicalBit, bitLenInt outputBit)
 Quantum analog of classical "OR" gate. More...
 
virtual void CLXOR (bitLenInt inputQBit, bool inputClassicalBit, bitLenInt outputBit)
 Quantum analog of classical "XOR" gate. More...
 
virtual void RT (real1 radians, bitLenInt qubitIndex)
 Phase shift gate. More...
 
virtual void RTDyad (int numerator, int denomPower, bitLenInt qubitIndex)
 Dyadic fraction phase shift gate. More...
 
virtual void RX (real1 radians, bitLenInt qubitIndex)
 X axis rotation gate. More...
 
virtual void RXDyad (int numerator, int denomPower, bitLenInt qubitIndex)
 Dyadic fraction X axis rotation gate. More...
 
virtual void Exp (real1 radians, bitLenInt qubitIndex)
 (Identity) Exponentiation gate More...
 
virtual void ExpDyad (int numerator, int denomPower, bitLenInt qubitIndex)
 Dyadic fraction (identity) exponentiation gate. More...
 
virtual void ExpX (real1 radians, bitLenInt qubitIndex)
 Pauli X exponentiation gate. More...
 
virtual void ExpXDyad (int numerator, int denomPower, bitLenInt qubitIndex)
 Dyadic fraction Pauli X exponentiation gate. More...
 
virtual void ExpY (real1 radians, bitLenInt qubitIndex)
 Pauli Y exponentiation gate. More...
 
virtual void ExpYDyad (int numerator, int denomPower, bitLenInt qubitIndex)
 Dyadic fraction Pauli Y exponentiation gate. More...
 
virtual void ExpZ (real1 radians, bitLenInt qubitIndex)
 Pauli Z exponentiation gate. More...
 
virtual void ExpZDyad (int numerator, int denomPower, bitLenInt qubitIndex)
 Dyadic fraction Pauli Z exponentiation gate. More...
 
virtual void CRX (real1 radians, bitLenInt control, bitLenInt target)
 Controlled X axis rotation gate. More...
 
virtual void CRXDyad (int numerator, int denomPower, bitLenInt control, bitLenInt target)
 Controlled dyadic fraction X axis rotation gate. More...
 
virtual void RY (real1 radians, bitLenInt qubitIndex)
 Y axis rotation gate. More...
 
virtual void RYDyad (int numerator, int denomPower, bitLenInt qubitIndex)
 Dyadic fraction Y axis rotation gate. More...
 
virtual void CRY (real1 radians, bitLenInt control, bitLenInt target)
 Controlled Y axis rotation gate. More...
 
virtual void CRYDyad (int numerator, int denomPower, bitLenInt control, bitLenInt target)
 Controlled dyadic fraction y axis rotation gate. More...
 
virtual void RZ (real1 radians, bitLenInt qubitIndex)
 Z axis rotation gate. More...
 
virtual void RZDyad (int numerator, int denomPower, bitLenInt qubitIndex)
 Dyadic fraction Z axis rotation gate. More...
 
virtual void CRZ (real1 radians, bitLenInt control, bitLenInt target)
 Controlled Z axis rotation gate. More...
 
virtual void CRZDyad (int numerator, int denomPower, bitLenInt control, bitLenInt target)
 Controlled dyadic fraction Z axis rotation gate. More...
 
virtual void CRT (real1 radians, bitLenInt control, bitLenInt target)
 Controlled "phase shift gate". More...
 
virtual void CRTDyad (int numerator, int denomPower, bitLenInt control, bitLenInt target)
 Controlled dyadic fraction "phase shift gate". More...
 
virtual void H (bitLenInt start, bitLenInt length)
 Bitwise Hadamard. More...
 
virtual void Y (bitLenInt start, bitLenInt length)
 Bitwise Pauli Y operator. More...
 
virtual void Z (bitLenInt start, bitLenInt length)
 Bitwise Pauli Z operator. More...
 
virtual void CNOT (bitLenInt inputBits, bitLenInt targetBits, bitLenInt length)
 Bitwise controlled-not. More...
 
virtual void AntiCNOT (bitLenInt inputBits, bitLenInt targetBits, bitLenInt length)
 Bitwise "anti-"controlled-not. More...
 
virtual void CCNOT (bitLenInt control1, bitLenInt control2, bitLenInt target, bitLenInt length)
 Bitwise doubly controlled-not. More...
 
virtual void AntiCCNOT (bitLenInt control1, bitLenInt control2, bitLenInt target, bitLenInt length)
 Bitwise doubly "anti-"controlled-not. More...
 
virtual void AND (bitLenInt inputStart1, bitLenInt inputStart2, bitLenInt outputStart, bitLenInt length)
 Bitwise "AND". More...
 
virtual void CLAND (bitLenInt qInputStart, bitCapInt classicalInput, bitLenInt outputStart, bitLenInt length)
 Classical bitwise "AND". More...
 
virtual void OR (bitLenInt inputStart1, bitLenInt inputStart2, bitLenInt outputStart, bitLenInt length)
 Bitwise "OR". More...
 
virtual void CLOR (bitLenInt qInputStart, bitCapInt classicalInput, bitLenInt outputStart, bitLenInt length)
 Classical bitwise "OR". More...
 
virtual void XOR (bitLenInt inputStart1, bitLenInt inputStart2, bitLenInt outputStart, bitLenInt length)
 Bitwise "XOR". More...
 
virtual void CLXOR (bitLenInt qInputStart, bitCapInt classicalInput, bitLenInt outputStart, bitLenInt length)
 Classical bitwise "XOR". More...
 
virtual void RT (real1 radians, bitLenInt start, bitLenInt length)
 Bitwise phase shift gate. More...
 
virtual void RTDyad (int numerator, int denomPower, bitLenInt start, bitLenInt length)
 Bitwise dyadic fraction phase shift gate. More...
 
virtual void RX (real1 radians, bitLenInt start, bitLenInt length)
 Bitwise X axis rotation gate. More...
 
virtual void RXDyad (int numerator, int denomPower, bitLenInt start, bitLenInt length)
 Bitwise dyadic fraction X axis rotation gate. More...
 
virtual void CRX (real1 radians, bitLenInt control, bitLenInt target, bitLenInt length)
 Bitwise controlled X axis rotation gate. More...
 
virtual void CRXDyad (int numerator, int denomPower, bitLenInt control, bitLenInt target, bitLenInt length)
 Bitwise controlled dyadic fraction X axis rotation gate. More...
 
virtual void RY (real1 radians, bitLenInt start, bitLenInt length)
 Bitwise Y axis rotation gate. More...
 
virtual void RYDyad (int numerator, int denomPower, bitLenInt start, bitLenInt length)
 Bitwise dyadic fraction Y axis rotation gate. More...
 
virtual void CRY (real1 radians, bitLenInt control, bitLenInt target, bitLenInt length)
 Bitwise controlled Y axis rotation gate. More...
 
virtual void CRYDyad (int numerator, int denomPower, bitLenInt control, bitLenInt target, bitLenInt length)
 Bitwise controlled dyadic fraction y axis rotation gate. More...
 
virtual void RZ (real1 radians, bitLenInt start, bitLenInt length)
 Bitwise Z axis rotation gate. More...
 
virtual void RZDyad (int numerator, int denomPower, bitLenInt start, bitLenInt length)
 Bitwise dyadic fraction Z axis rotation gate. More...
 
virtual void CRZ (real1 radians, bitLenInt control, bitLenInt target, bitLenInt length)
 Bitwise controlled Z axis rotation gate. More...
 
virtual void CRZDyad (int numerator, int denomPower, bitLenInt control, bitLenInt target, bitLenInt length)
 Bitwise controlled dyadic fraction Z axis rotation gate. More...
 
virtual void CRT (real1 radians, bitLenInt control, bitLenInt target, bitLenInt length)
 Bitwise controlled "phase shift gate". More...
 
virtual void CRTDyad (int numerator, int denomPower, bitLenInt control, bitLenInt target, bitLenInt length)
 Bitwise controlled dyadic fraction "phase shift gate". More...
 
virtual void Exp (real1 radians, bitLenInt start, bitLenInt length)
 Bitwise (identity) exponentiation gate. More...
 
virtual void ExpDyad (int numerator, int denomPower, bitLenInt start, bitLenInt length)
 Bitwise Dyadic fraction (identity) exponentiation gate. More...
 
virtual void ExpX (real1 radians, bitLenInt start, bitLenInt length)
 Bitwise Pauli X exponentiation gate. More...
 
virtual void ExpXDyad (int numerator, int denomPower, bitLenInt start, bitLenInt length)
 Bitwise Dyadic fraction Pauli X exponentiation gate. More...
 
virtual void ExpY (real1 radians, bitLenInt start, bitLenInt length)
 Bitwise Pauli Y exponentiation gate. More...
 
virtual void ExpYDyad (int numerator, int denomPower, bitLenInt start, bitLenInt length)
 Bitwise Dyadic fraction Pauli Y exponentiation gate. More...
 
virtual void ExpZ (real1 radians, bitLenInt start, bitLenInt length)
 Bitwise Pauli Z exponentiation gate. More...
 
virtual void ExpZDyad (int numerator, int denomPower, bitLenInt start, bitLenInt length)
 Bitwise Dyadic fraction Pauli Z exponentiation gate. More...
 
virtual void CY (bitLenInt control, bitLenInt target, bitLenInt length)
 Bitwise controlled Y gate. More...
 
virtual void CZ (bitLenInt control, bitLenInt target, bitLenInt length)
 Bitwise controlled Z gate. More...
 
virtual void ASL (bitLenInt shift, bitLenInt start, bitLenInt length)
 Arithmetic shift left, with last 2 bits as sign and carry. More...
 
virtual void ASR (bitLenInt shift, bitLenInt start, bitLenInt length)
 Arithmetic shift right, with last 2 bits as sign and carry. More...
 
virtual void LSL (bitLenInt shift, bitLenInt start, bitLenInt length)
 Logical shift left, filling the extra bits with |0> More...
 
virtual void LSR (bitLenInt shift, bitLenInt start, bitLenInt length)
 Logical shift right, filling the extra bits with |0> More...
 
virtual void QFT (bitLenInt start, bitLenInt length)
 Quantum Fourier Transform - Apply the quantum Fourier transform to the register. More...
 
virtual void SetReg (bitLenInt start, bitLenInt length, bitCapInt value)
 Set register bits to given permutation. More...
 
virtual bitCapInt MReg (bitLenInt start, bitLenInt length)
 Measure permutation state of a register. More...
 
virtual void Swap (bitLenInt qubitIndex1, bitLenInt qubitIndex2)
 Swap values of two bits in register. More...
 
virtual void Reverse (bitLenInt first, bitLenInt last)
 Reverse all of the bits in a sequence. More...
 
virtual void SetBit (bitLenInt qubitIndex1, bool value)
 Set individual bit to pure |0> (false) or |1> (true) state. More...
 
virtual bool ForceM (bitLenInt qubitIndex, bool result, bool doForce=true, real1 nrmlzr=1.0)
 Act as though a measurement was applied, except force the result of the measurement. More...
 

Protected Member Functions

virtual void ApplyM (bitCapInt qPower, bool result, complex nrm)
 
void InitOCL (int devID)
 
void ResetStateVec (complex *nStateVec, BufferPtr nStateBuffer)
 
virtual complexAllocStateVec (bitCapInt elemCount)
 
size_t FixWorkItemCount (size_t maxI, size_t wic)
 
size_t FixGroupSize (size_t wic, size_t gs)
 
void DecohereDispose (bitLenInt start, bitLenInt length, QEngineOCLPtr dest)
 
void DispatchCall (OCLAPI api_call, bitCapInt(&bciArgs)[BCI_ARG_LEN], unsigned char *values=NULL, bitCapInt valuesLength=0, bool isParallel=false)
 
void Apply2x2 (bitCapInt offset1, bitCapInt offset2, const complex *mtrx, const bitLenInt bitCount, const bitCapInt *qPowersSorted, bool doCalcNorm)
 
void ROx (OCLAPI api_call, bitLenInt shift, bitLenInt start, bitLenInt length)
 
void INT (OCLAPI api_call, bitCapInt toMod, const bitLenInt inOutStart, const bitLenInt length)
 Add or Subtract integer (without sign or carry) More...
 
void INTC (OCLAPI api_call, bitCapInt toMod, const bitLenInt inOutStart, const bitLenInt length, const bitLenInt carryIndex)
 Add or Subtract integer (without sign, with carry) More...
 
void INTS (OCLAPI api_call, bitCapInt toMod, const bitLenInt inOutStart, const bitLenInt length, const bitLenInt overflowIndex)
 Add or Subtract integer (with overflow, without carry) More...
 
void INTSC (OCLAPI api_call, bitCapInt toMod, const bitLenInt inOutStart, const bitLenInt length, const bitLenInt carryIndex)
 Add or Subtract integer (with sign, with carry) More...
 
void INTSC (OCLAPI api_call, bitCapInt toMod, const bitLenInt inOutStart, const bitLenInt length, const bitLenInt overflowIndex, const bitLenInt carryIndex)
 Add or Subtract integer (with sign, with carry) More...
 
void INTBCD (OCLAPI api_call, bitCapInt toMod, const bitLenInt inOutStart, const bitLenInt length)
 Add or Subtract integer (BCD) More...
 
void INTBCDC (OCLAPI api_call, bitCapInt toMod, const bitLenInt inOutStart, const bitLenInt length, const bitLenInt carryIndex)
 Add or Subtract integer (BCD, with carry) More...
 
bitCapInt OpIndexed (OCLAPI api_call, bitCapInt carryIn, bitLenInt indexStart, bitLenInt indexLength, bitLenInt valueStart, bitLenInt valueLength, bitLenInt carryIndex, unsigned char *values, bool isParallel)
 Add or Subtract based on an indexed load from classical memory. More...
 
- Protected Member Functions inherited from Qrack::QInterface
virtual real1 Rand ()
 Generate a random real1 from 0 to 1. More...
 
virtual void SetRandomSeed (uint32_t seed)
 
virtual void ApplyControlled2x2 (bitLenInt control, bitLenInt target, const complex *mtrx, bool doCalcNorm)
 
virtual void ApplyAntiControlled2x2 (bitLenInt control, bitLenInt target, const complex *mtrx, bool doCalcNorm)
 
virtual void ApplyDoublyControlled2x2 (bitLenInt control1, bitLenInt control2, bitLenInt target, const complex *mtrx, bool doCalcNorm)
 
virtual void ApplyDoublyAntiControlled2x2 (bitLenInt control1, bitLenInt control2, bitLenInt target, const complex *mtrx, bool doCalcNorm)
 

Protected Attributes

complexstateVec
 
int deviceID
 
DeviceContextPtr device_context
 
cl::CommandQueue queue
 
cl::Context context
 
BufferPtr stateBuffer
 
cl::Buffer cmplxBuffer
 
cl::Buffer ulongBuffer
 
cl::Buffer nrmBuffer
 
real1nrmArray
 
size_t nrmGroupCount
 
size_t nrmGroupSize
 
size_t maxWorkItems
 
unsigned int procElemCount
 
- Protected Attributes inherited from Qrack::QInterface
bitLenInt qubitCount
 
bitCapInt maxQPower
 
real1 runningNorm
 
bool doNormalize
 
uint32_t randomSeed
 
std::shared_ptr< std::default_random_engine > rand_generator
 
std::uniform_real_distribution< real1rand_distribution
 

Static Protected Attributes

static const int BCI_ARG_LEN = 10
 

Detailed Description

OpenCL enhanced QEngineCPU implementation.

Constructor & Destructor Documentation

Qrack::QEngineOCL::QEngineOCL ( bitLenInt  qBitCount,
bitCapInt  initState,
std::shared_ptr< std::default_random_engine >  rgp = nullptr,
int  devID = -1,
bool  partialInit = false,
complex  phaseFac = complex(-999.0, -999.0) 
)

Initialize a Qrack::QEngineOCL object.

Specify the number of qubits and an initial permutation state. Additionally, optionally specify a pointer to a random generator engine object, a device ID from the list of devices in the OCLEngine singleton, and a boolean that is set to "true" to initialize the state vector of the object to zero norm.

"devID" is the index of an OpenCL device in the OCLEngine singleton, to select the device to run this engine on. "partialInit" is usually only set to true when this object is one of several collected in a Qrack::QEngineOCLMulti object, in which case this Qrack::QEngineOCL object might not contain the amplitude of the overall permutation state of the combined object.

Qrack::QEngineOCL::QEngineOCL ( QEngineOCLPtr  toCopy)
Qrack::QEngineOCL::~QEngineOCL ( )
inline

Member Function Documentation

complex * Qrack::QEngineOCL::AllocStateVec ( bitCapInt  elemCount)
protectedvirtual
void Qrack::QEngineOCL::Apply2x2 ( bitCapInt  offset1,
bitCapInt  offset2,
const complex mtrx,
const bitLenInt  bitCount,
const bitCapInt qPowersSorted,
bool  doCalcNorm 
)
protectedvirtual

Implements Qrack::QInterface.

void Qrack::QEngineOCL::ApplyM ( bitCapInt  qPower,
bool  result,
complex  nrm 
)
protectedvirtual

Implements Qrack::QInterface.

void Qrack::QEngineOCL::CDIV ( bitCapInt  toDiv,
bitLenInt  inOutStart,
bitLenInt  carryStart,
bitLenInt  controlBit,
bitLenInt  length 
)
virtual

Controlled division by integer.

Implements Qrack::QInterface.

void Qrack::QEngineOCL::CMUL ( bitCapInt  toMul,
bitLenInt  inOutStart,
bitLenInt  carryStart,
bitLenInt  controlBit,
bitLenInt  length,
bool  clearCarry = false 
)
virtual

Controlled multiplication by integer.

Implements Qrack::QInterface.

bitLenInt Qrack::QEngineOCL::Cohere ( QEngineOCLPtr  toCopy)
virtual
virtual bitLenInt Qrack::QEngineOCL::Cohere ( QInterfacePtr  toCopy)
inlinevirtual

Combine another QInterface with this one, after the last bit index of this one.

"Cohere" combines the quantum description of state of two independent QInterface objects into one object, containing the full permutation basis of the full object. The "inputState" bits are added after the last qubit index of the QInterface to which we "Cohere." Informally, "Cohere" is equivalent to "just setting another group of qubits down next to the first" without interacting them. Schroedinger's equation can form a description of state for two independent subsystems at once or "separable quantum subsystems" without interacting them. Once the description of state of the independent systems is combined, we can interact them, and we can describe their entanglements to each other, in which case they are no longer independent. A full entangled description of quantum state is not possible for two independent quantum subsystems until we "Cohere" them.

"Cohere" multiplies the probabilities of the indepedent permutation states of the two subsystems to find the probabilites of the entire set of combined permutations, by simple combinatorial reasoning. If the probablity of the "left-hand" subsystem being in |00> is 1/4, and the probablity of the "right-hand" subsystem being in |101> is 1/8, than the probability of the combined |00101> permutation state is 1/32, and so on for all permutations of the new combined state.

If the programmer doesn't want to "cheat" quantum mechanically, then the original copy of the state which is duplicated into the larger QInterface should be "thrown away" to satisfy "no clone theorem." This is not semantically enforced in Qrack, because optimization of an emulator might be acheived by "cloning" "under-the-hood" while only exposing a quantum mechanically consistent API or instruction set.

Returns the quantum bit offset that the QInterface was appended at, such that bit 5 in toCopy is equal to offset+5 in this object.

Implements Qrack::QInterface.

void Qrack::QEngineOCL::CopyState ( QInterfacePtr  orig)
virtual

Direct copy of raw state vector to produce a clone.

Warning
PSEUDO-QUANTUM

Implements Qrack::QInterface.

void Qrack::QEngineOCL::CPhaseFlipIfLess ( bitCapInt  greaterPerm,
bitLenInt  start,
bitLenInt  length,
bitLenInt  flagIndex 
)
virtual

The 6502 uses its carry flag also as a greater-than/less-than flag, for the CMP operation.

Implements Qrack::QInterface.

void Qrack::QEngineOCL::DEC ( bitCapInt  toSub,
bitLenInt  start,
bitLenInt  length 
)
virtual

Subtract integer (without sign, with carry)

Implements Qrack::QInterface.

void Qrack::QEngineOCL::DECBCD ( bitCapInt  toAdd,
bitLenInt  start,
bitLenInt  length 
)
virtual

Subtract integer (BCD)

Implements Qrack::QInterface.

void Qrack::QEngineOCL::DECBCDC ( bitCapInt  toSub,
bitLenInt  start,
bitLenInt  length,
bitLenInt  carryIndex 
)
virtual

Subtract integer (BCD, with carry)

Implements Qrack::QInterface.

void Qrack::QEngineOCL::DECC ( bitCapInt  toSub,
bitLenInt  start,
bitLenInt  length,
bitLenInt  carryIndex 
)
virtual

Subtract integer (without sign, with carry)

Implements Qrack::QInterface.

void Qrack::QEngineOCL::Decohere ( bitLenInt  start,
bitLenInt  length,
QInterfacePtr  dest 
)
virtual

Minimally decohere a set of contiguous bits from the full coherent unit, into "destination.".

Minimally decohere a set of contigious bits from the full coherent unit. The length of this coherent unit is reduced by the length of bits decohered, and the bits removed are output in the destination QInterface pointer. The destination object must be initialized to the correct number of bits, in 0 permutation state. For quantum mechanical accuracy, the bit set removed and the bit set left behind should be quantum mechanically "separable."

Like how "Cohere" is like "just setting another group of qubits down next to the first," if two sets of qubits are not entangled, then "Decohere" is like "just moving a few qubits away from the rest." Schroedinger's equation does not require bits to be explicitly interacted in order to describe their permutation basis, and the descriptions of state of separable subsystems, those which are not entangled with other subsystems, are just as easily removed from the description of state.

If we have for example 5 qubits, and we wish to separate into "left" and "right" subsystems of 3 and 2 qubits, we sum probabilities of one permutation of the "left" three over ALL permutations of the "right" two, for all permutations, and vice versa, like so:

$ prob(|(left) 1000>) = prob(|1000 00>) + prob(|1000 10>) + prob(|1000 01>) + prob(|1000 11>). $

If the subsystems are not "separable," i.e. if they are entangled, this operation is not well-motivated, and its output is not necessarily defined. (The summing of probabilities over permutations of subsytems will be performed as described above, but this is not quantum mechanically meaningful.) To ensure that the subsystem is "separable," i.e. that it has no entanglements to other subsystems in the QInterface, it can be measured with M(), or else all qubits other than the subsystem can be measured.

Implements Qrack::QInterface.

void Qrack::QEngineOCL::DecohereDispose ( bitLenInt  start,
bitLenInt  length,
QEngineOCLPtr  dest 
)
protected
void Qrack::QEngineOCL::DECS ( bitCapInt  toSub,
bitLenInt  start,
bitLenInt  length,
bitLenInt  carryIndex 
)
virtual

Subtract integer (without sign, with carry)

Implements Qrack::QInterface.

void Qrack::QEngineOCL::DECSC ( bitCapInt  toAdd,
bitLenInt  start,
bitLenInt  length,
bitLenInt  overflowIndex,
bitLenInt  carryIndex 
)
virtual

Subtract integer (with sign, with carry)

Implements Qrack::QInterface.

void Qrack::QEngineOCL::DECSC ( bitCapInt  toAdd,
bitLenInt  start,
bitLenInt  length,
bitLenInt  carryIndex 
)
virtual

Subtract integer (with sign, with carry)

Implements Qrack::QInterface.

void Qrack::QEngineOCL::DispatchCall ( OCLAPI  api_call,
bitCapInt(&)  bciArgs[BCI_ARG_LEN],
unsigned char *  values = NULL,
bitCapInt  valuesLength = 0,
bool  isParallel = false 
)
protected
void Qrack::QEngineOCL::Dispose ( bitLenInt  start,
bitLenInt  length 
)
virtual

Minimally decohere a set of contigious bits from the full coherent unit, throwing these qubits away.

Minimally decohere a set of contigious bits from the full coherent unit, discarding these bits. The length of this coherent unit is reduced by the length of bits decohered. For quantum mechanical accuracy, the bit set removed and the bit set left behind should be quantum mechanically "separable."

Like how "Cohere" is like "just setting another group of qubits down next to the first," if two sets of qubits are not entangled, then "Dispose" is like "just moving a few qubits away from the rest, and throwing them in the trash." Schroedinger's equation does not require bits to be explicitly interacted in order to describe their permutation basis, and the descriptions of state of separable subsystems, those which are not entangled with other subsystems, are just as easily removed from the description of state.

If we have for example 5 qubits, and we wish to separate into "left" and "right" subsystems of 3 and 2 qubits, we sum probabilities of one permutation of the "left" three over ALL permutations of the "right" two, for all permutations, and vice versa, like so:

$ prob(|(left) 1000>) = prob(|1000 00>) + prob(|1000 10>) + prob(|1000 01>) + prob(|1000 11>). $

If the subsystems are not "separable," i.e. if they are entangled, this operation is not well-motivated, and its output is not necessarily defined. (The summing of probabilities over permutations of subsytems will be performed as described above, but this is not quantum mechanically meaningful.) To ensure that the subsystem is "separable," i.e. that it has no entanglements to other subsystems in the QInterface, it can be measured with M(), or else all qubits other than the subsystem can be measured.

Implements Qrack::QInterface.

void Qrack::QEngineOCL::DIV ( bitCapInt  toDiv,
bitLenInt  inOutStart,
bitLenInt  carryStart,
bitLenInt  length 
)
virtual

Divide by integer.

Implements Qrack::QInterface.

virtual void Qrack::QEngineOCL::EnableNormalize ( bool  doN)
inlinevirtual
size_t Qrack::QEngineOCL::FixGroupSize ( size_t  wic,
size_t  gs 
)
protected
size_t Qrack::QEngineOCL::FixWorkItemCount ( size_t  maxI,
size_t  wic 
)
protected
virtual cl::Context& Qrack::QEngineOCL::GetCLContext ( )
inlinevirtual
virtual int Qrack::QEngineOCL::GetCLContextID ( )
inlinevirtual
virtual cl::CommandQueue& Qrack::QEngineOCL::GetCLQueue ( )
inlinevirtual
virtual int Qrack::QEngineOCL::GetDeviceID ( )
inlinevirtual
virtual real1 Qrack::QEngineOCL::GetNorm ( bool  update = true)
inlinevirtual
virtual BufferPtr Qrack::QEngineOCL::GetStateBuffer ( )
inlinevirtual
virtual complex* Qrack::QEngineOCL::GetStateVector ( )
inlinevirtual
void Qrack::QEngineOCL::INC ( bitCapInt  toAdd,
bitLenInt  start,
bitLenInt  length 
)
virtual

Increment integer (without sign, with carry)

Implements Qrack::QInterface.

void Qrack::QEngineOCL::INCBCD ( bitCapInt  toAdd,
bitLenInt  start,
bitLenInt  length 
)
virtual

Increment integer (BCD)

Implements Qrack::QInterface.

void Qrack::QEngineOCL::INCBCDC ( bitCapInt  toAdd,
bitLenInt  start,
bitLenInt  length,
bitLenInt  carryIndex 
)
virtual

Increment integer (BCD, with carry)

Implements Qrack::QInterface.

void Qrack::QEngineOCL::INCC ( bitCapInt  toAdd,
bitLenInt  start,
bitLenInt  length,
bitLenInt  carryIndex 
)
virtual

Increment integer (without sign, with carry)

Implements Qrack::QInterface.

void Qrack::QEngineOCL::INCS ( bitCapInt  toAdd,
bitLenInt  start,
bitLenInt  length,
bitLenInt  carryIndex 
)
virtual

Increment integer (without sign, with carry)

Implements Qrack::QInterface.

void Qrack::QEngineOCL::INCSC ( bitCapInt  toAdd,
bitLenInt  start,
bitLenInt  length,
bitLenInt  overflowIndex,
bitLenInt  carryIndex 
)
virtual

Increment integer (with sign, with carry)

Implements Qrack::QInterface.

void Qrack::QEngineOCL::INCSC ( bitCapInt  toAdd,
bitLenInt  start,
bitLenInt  length,
bitLenInt  carryIndex 
)
virtual

Increment integer (with sign, with carry)

Implements Qrack::QInterface.

bitCapInt Qrack::QEngineOCL::IndexedADC ( bitLenInt  indexStart,
bitLenInt  indexLength,
bitLenInt  valueStart,
bitLenInt  valueLength,
bitLenInt  carryIndex,
unsigned char *  values,
bool  isParallel 
)
virtual

Add based on an indexed load from classical memory.

virtual bitCapInt Qrack::QEngineOCL::IndexedADC ( bitLenInt  indexStart,
bitLenInt  indexLength,
bitLenInt  valueStart,
bitLenInt  valueLength,
bitLenInt  carryIndex,
unsigned char *  values 
)
inlinevirtual

Add to entangled 8 bit register state with a superposed index-offset-based read from classical memory.

inputStart" is the start index of 8 qubits that act as an index into the 256 byte "values" array. The "outputStart" bits would usually already be entangled with the "inputStart" bits via a IndexedLDA() operation. With the "inputStart" bits being a "key" and the "outputStart" bits being a value, the permutation state |key, value> is mapped to |key, value + values[key]>. This is similar to classical parallel addition of two arrays. However, when either of the registers are measured, both registers will collapse into one random VALID key-value pair, with any addition or subtraction done to the "value." See IndexedLDA() for context.

FOR BEST EFFICIENCY, the "values" array should be allocated aligned to a 64-byte boundary. (See the unit tests suite code for an example of how to align the allocation.)

While a QInterface represents an interacting set of qubit-based registers, or a virtual quantum chip, the registers need to interact in some way with (classical or quantum) RAM. IndexedLDA is a RAM access method similar to the X addressing mode of the MOS 6502 chip, if the X register can be in a state of coherent superposition when it loads from RAM. "IndexedADC" and "IndexedSBC" perform add and subtract (with carry) operations on a state usually initially prepared with IndexedLDA().

Implements Qrack::QInterface.

bitCapInt Qrack::QEngineOCL::IndexedLDA ( bitLenInt  indexStart,
bitLenInt  indexLength,
bitLenInt  valueStart,
bitLenInt  valueLength,
unsigned char *  values,
bool  isParallel 
)
virtual

Set 8 bit register bits based on read from classical memory.

virtual bitCapInt Qrack::QEngineOCL::IndexedLDA ( bitLenInt  indexStart,
bitLenInt  indexLength,
bitLenInt  valueStart,
bitLenInt  valueLength,
unsigned char *  values 
)
inlinevirtual

Set 8 bit register bits by a superposed index-offset-based read from classical memory.

"inputStart" is the start index of 8 qubits that act as an index into the 256 byte "values" array. The "outputStart" bits are first cleared, then the separable |input, 00000000> permutation state is mapped to |input, values[input]>, with "values[input]" placed in the "outputStart" register. FOR BEST EFFICIENCY, the "values" array should be allocated aligned to a 64-byte boundary. (See the unit tests suite code for an example of how to align the allocation.)

While a QInterface represents an interacting set of qubit-based registers, or a virtual quantum chip, the registers need to interact in some way with (classical or quantum) RAM. IndexedLDA is a RAM access method similar to the X addressing mode of the MOS 6502 chip, if the X register can be in a state of coherent superposition when it loads from RAM.

The physical motivation for this addressing mode can be explained as follows: say that we have a superconducting quantum interface device (SQUID) based chip. SQUIDs have already been demonstrated passing coherently superposed electrical currents. In a sufficiently quantum-mechanically isolated qubit chip with a classical cache, with both classical RAM and registers likely cryogenically isolated from the environment, SQUIDs could (hopefully) pass coherently superposed electrical currents into the classical RAM cache to load values into a qubit register. The state loaded would be a superposition of the values of all RAM to which coherently superposed electrical currents were passed.

In qubit system similar to the MOS 6502, say we have qubit-based "accumulator" and "X index" registers, and say that we start with a superposed X index register. In (classical) X addressing mode, the X index register value acts an offset into RAM from a specified starting address. The X addressing mode of a LoaD Accumulator (LDA) instruction, by the physical mechanism described above, should load the accumulator in quantum parallel with the values of every different address of RAM pointed to in superposition by the X index register. The superposed values in the accumulator are entangled with those in the X index register, by way of whatever values the classical RAM pointed to by X held at the time of the load. (If the RAM at index "36" held an unsigned char value of "27," then the value "36" in the X index register becomes entangled with the value "27" in the accumulator, and so on in quantum parallel for all superposed values of the X index register, at once.) If the X index register or accumulator are then measured, the two registers will both always collapse into a random but valid key-value pair of X index offset and value at that classical RAM address.

Note that a "superposed store operation in classical RAM" is not possible by analagous reasoning. Classical RAM would become entangled with both the accumulator and the X register. When the state of the registers was collapsed, we would find that only one "store" operation to a single memory address had actually been carried out, consistent with the address offset in the collapsed X register and the byte value in the collapsed accumulator. It would not be possible by this model to write in quantum parallel to more than one address of classical memory at a time.

Implements Qrack::QInterface.

bitCapInt Qrack::QEngineOCL::IndexedSBC ( bitLenInt  indexStart,
bitLenInt  indexLength,
bitLenInt  valueStart,
bitLenInt  valueLength,
bitLenInt  carryIndex,
unsigned char *  values,
bool  isParallel 
)
virtual

Subtract based on an indexed load from classical memory.

virtual bitCapInt Qrack::QEngineOCL::IndexedSBC ( bitLenInt  indexStart,
bitLenInt  indexLength,
bitLenInt  valueStart,
bitLenInt  valueLength,
bitLenInt  carryIndex,
unsigned char *  values 
)
inlinevirtual

Subtract from an entangled 8 bit register state with a superposed index-offset-based read from classical memory.

"inputStart" is the start index of 8 qubits that act as an index into the 256 byte "values" array. The "outputStart" bits would usually already be entangled with the "inputStart" bits via a IndexedLDA() operation. With the "inputStart" bits being a "key" and the "outputStart" bits being a value, the permutation state |key, value> is mapped to |key, value - values[key]>. This is similar to classical parallel addition of two arrays. However, when either of the registers are measured, both registers will collapse into one random VALID key-value pair, with any addition or subtraction done to the "value." See QInterface::IndexedLDA for context.

FOR BEST EFFICIENCY, the "values" array should be allocated aligned to a 64-byte boundary. (See the unit tests suite code for an example of how to align the allocation.)

While a QInterface represents an interacting set of qubit-based registers, or a virtual quantum chip, the registers need to interact in some way with (classical or quantum) RAM. IndexedLDA is a RAM access method similar to the X addressing mode of the MOS 6502 chip, if the X register can be in a state of coherent superposition when it loads from RAM. "IndexedADC" and "IndexedSBC" perform add and subtract (with carry) operations on a state usually initially prepared with IndexedLDA().

Implements Qrack::QInterface.

void Qrack::QEngineOCL::InitOCL ( int  devID)
protected
void Qrack::QEngineOCL::INT ( OCLAPI  api_call,
bitCapInt  toMod,
const bitLenInt  inOutStart,
const bitLenInt  length 
)
protected

Add or Subtract integer (without sign or carry)

void Qrack::QEngineOCL::INTBCD ( OCLAPI  api_call,
bitCapInt  toMod,
const bitLenInt  inOutStart,
const bitLenInt  length 
)
protected

Add or Subtract integer (BCD)

void Qrack::QEngineOCL::INTBCDC ( OCLAPI  api_call,
bitCapInt  toMod,
const bitLenInt  inOutStart,
const bitLenInt  length,
const bitLenInt  carryIndex 
)
protected

Add or Subtract integer (BCD, with carry)

void Qrack::QEngineOCL::INTC ( OCLAPI  api_call,
bitCapInt  toMod,
const bitLenInt  inOutStart,
const bitLenInt  length,
const bitLenInt  carryIndex 
)
protected

Add or Subtract integer (without sign, with carry)

void Qrack::QEngineOCL::INTS ( OCLAPI  api_call,
bitCapInt  toMod,
const bitLenInt  inOutStart,
const bitLenInt  length,
const bitLenInt  overflowIndex 
)
protected

Add or Subtract integer (with overflow, without carry)

void Qrack::QEngineOCL::INTSC ( OCLAPI  api_call,
bitCapInt  toMod,
const bitLenInt  inOutStart,
const bitLenInt  length,
const bitLenInt  carryIndex 
)
protected

Add or Subtract integer (with sign, with carry)

void Qrack::QEngineOCL::INTSC ( OCLAPI  api_call,
bitCapInt  toMod,
const bitLenInt  inOutStart,
const bitLenInt  length,
const bitLenInt  overflowIndex,
const bitLenInt  carryIndex 
)
protected

Add or Subtract integer (with sign, with carry)

void Qrack::QEngineOCL::LockSync ( cl_int  flags = (CL_MAP_READ | CL_MAP_WRITE))
virtual
void Qrack::QEngineOCL::MUL ( bitCapInt  toMul,
bitLenInt  inOutStart,
bitLenInt  carryStart,
bitLenInt  length,
bool  clearCary = false 
)
virtual

Multiply by integer.

Implements Qrack::QInterface.

void Qrack::QEngineOCL::NormalizeState ( real1  nrm = -999.0)
virtual

Implements Qrack::QInterface.

bitCapInt Qrack::QEngineOCL::OpIndexed ( OCLAPI  api_call,
bitCapInt  carryIn,
bitLenInt  indexStart,
bitLenInt  indexLength,
bitLenInt  valueStart,
bitLenInt  valueLength,
bitLenInt  carryIndex,
unsigned char *  values,
bool  isParallel 
)
protected

Add or Subtract based on an indexed load from classical memory.

void Qrack::QEngineOCL::PhaseFlip ( )
virtual

Phase flip always - equivalent to Z X Z X on any bit in the QInterface.

Implements Qrack::QInterface.

real1 Qrack::QEngineOCL::Prob ( bitLenInt  qubit)
virtual

PSEUDO-QUANTUM Direct measure of bit probability to be in |1> state.

Implements Qrack::QInterface.

real1 Qrack::QEngineOCL::ProbAll ( bitCapInt  fullRegister)
virtual

Direct measure of full register probability to be in permutation state.

Warning
PSEUDO-QUANTUM

Implements Qrack::QInterface.

void Qrack::QEngineOCL::ResetStateVec ( complex nStateVec,
BufferPtr  nStateBuffer 
)
protected
void Qrack::QEngineOCL::ROL ( bitLenInt  shift,
bitLenInt  start,
bitLenInt  length 
)
virtual

"Circular shift left" - shift bits left, and carry last bits.

Reimplemented from Qrack::QInterface.

void Qrack::QEngineOCL::ROR ( bitLenInt  shift,
bitLenInt  start,
bitLenInt  length 
)
virtual

"Circular shift right" - shift bits right, and carry first bits.

Reimplemented from Qrack::QInterface.

void Qrack::QEngineOCL::ROx ( OCLAPI  api_call,
bitLenInt  shift,
bitLenInt  start,
bitLenInt  length 
)
protected
void Qrack::QEngineOCL::SetDevice ( const int &  dID,
const bool &  forceReInit = false 
)
virtual
virtual void Qrack::QEngineOCL::SetNorm ( real1  n)
inlinevirtual
void Qrack::QEngineOCL::SetPermutation ( bitCapInt  perm)
virtual

Set to a specific permutation.

Implements Qrack::QInterface.

void Qrack::QEngineOCL::SetQuantumState ( complex inputState)
virtual

Set arbitrary pure quantum state, in unsigned int permutation basis.

Implements Qrack::QInterface.

void Qrack::QEngineOCL::SetQubitCount ( bitLenInt  qb)
virtual

Reimplemented from Qrack::QInterface.

void Qrack::QEngineOCL::Swap ( bitLenInt  start1,
bitLenInt  start2,
bitLenInt  length 
)
virtual

Bitwise swap.

Reimplemented from Qrack::QInterface.

void Qrack::QEngineOCL::Sync ( )
virtual
void Qrack::QEngineOCL::UnlockSync ( )
virtual
void Qrack::QEngineOCL::UpdateRunningNorm ( )
virtual
void Qrack::QEngineOCL::X ( bitLenInt  start,
bitLenInt  length 
)
virtual

Bitwise Pauli X (or logical "NOT") operator.

Reimplemented from Qrack::QInterface.

void Qrack::QEngineOCL::ZeroPhaseFlip ( bitLenInt  start,
bitLenInt  length 
)
virtual

For chips with a zero flag, flip the phase of the state where the register equals zero.

Implements Qrack::QInterface.

Member Data Documentation

const int Qrack::QEngineOCL::BCI_ARG_LEN = 10
staticprotected
cl::Buffer Qrack::QEngineOCL::cmplxBuffer
protected
cl::Context Qrack::QEngineOCL::context
protected
DeviceContextPtr Qrack::QEngineOCL::device_context
protected
int Qrack::QEngineOCL::deviceID
protected
size_t Qrack::QEngineOCL::maxWorkItems
protected
real1* Qrack::QEngineOCL::nrmArray
protected
cl::Buffer Qrack::QEngineOCL::nrmBuffer
protected
size_t Qrack::QEngineOCL::nrmGroupCount
protected
size_t Qrack::QEngineOCL::nrmGroupSize
protected
unsigned int Qrack::QEngineOCL::procElemCount
protected
cl::CommandQueue Qrack::QEngineOCL::queue
protected
BufferPtr Qrack::QEngineOCL::stateBuffer
protected
complex* Qrack::QEngineOCL::stateVec
protected
cl::Buffer Qrack::QEngineOCL::ulongBuffer
protected

The documentation for this class was generated from the following files: