Qrack  9.0
General classical-emulating-quantum development framework
Public Member Functions | Static Public Attributes | Protected Member Functions | Protected Attributes | List of all members
Qrack::QEngineOCL Class Reference

OpenCL enhanced QEngineCPU implementation. More...

#include <qengine_opencl.hpp>

Inheritance diagram for Qrack::QEngineOCL:
Inheritance graph
[legend]
Collaboration diagram for Qrack::QEngineOCL:
Collaboration graph
[legend]

Public Member Functions

 QEngineOCL (bitLenInt qBitCount, bitCapInt initState, qrack_rand_gen_ptr rgp=nullptr, complex phaseFac=CMPLX_DEFAULT_ARG, bool doNorm=false, bool randomGlobalPhase=true, bool useHostMem=false, int64_t devID=-1, bool useHardwareRNG=true, bool ignored=false, real1_f norm_thresh=REAL1_EPSILON, std::vector< int64_t > ignored2={}, bitLenInt ignored4=0U, real1_f ignored3=FP_NORM_EPSILON_F)
 Initialize a Qrack::QEngineOCL object. More...
 
 ~QEngineOCL ()
 
virtual bool isOpenCL ()
 Returns "true" if current simulation is OpenCL-based. More...
 
bool IsZeroAmplitude ()
 Returns "true" only if amplitudes are all totally 0. More...
 
real1_f FirstNonzeroPhase ()
 Get phase of lowest permutation nonzero amplitude. More...
 
void SwitchHostPtr (bool useHostMem)
 Switch to/from host/device state vector bufffer. More...
 
void FreeAll ()
 
void ZeroAmplitudes ()
 Set all amplitudes to 0, and optionally temporarily deallocate state vector RAM. More...
 
void CopyStateVec (QEnginePtr src)
 Exactly copy the state vector of a different QEngine instance. More...
 
void GetAmplitudePage (complex *pagePtr, bitCapIntOcl offset, bitCapIntOcl length)
 Copy a "page" of amplitudes from this QEngine's internal state, into pagePtr. More...
 
void SetAmplitudePage (const complex *pagePtr, bitCapIntOcl offset, bitCapIntOcl length)
 Copy a "page" of amplitudes from pagePtr into this QEngine's internal state. More...
 
void SetAmplitudePage (QEnginePtr pageEnginePtr, bitCapIntOcl srcOffset, bitCapIntOcl dstOffset, bitCapIntOcl length)
 Copy a "page" of amplitudes from another QEngine, pointed to by pageEnginePtr, into this QEngine's internal state. More...
 
void ShuffleBuffers (QEnginePtr engine)
 Swap the high half of this engine with the low half of another. More...
 
QEnginePtr CloneEmpty ()
 Clone this QEngine's settings, with a zeroed state vector. More...
 
void QueueSetDoNormalize (bool doNorm)
 Add an operation to the (OpenCL) queue, to set the value of doNormalize, which controls whether to automatically normalize the state. More...
 
void QueueSetRunningNorm (real1_f runningNrm)
 Add an operation to the (OpenCL) queue, to set the value of runningNorm, which is the normalization constant for the next normalization operation. More...
 
void AddQueueItem (const QueueItem &item)
 
void QueueCall (OCLAPI api_call, size_t workItemCount, size_t localGroupSize, std::vector< BufferPtr > args, size_t localBuffSize=0U, size_t deallocSize=0U)
 
bitCapIntOcl GetMaxSize ()
 
void SetPermutation (bitCapInt perm, complex phaseFac=CMPLX_DEFAULT_ARG)
 Set to a specific permutation of all qubits. More...
 
void UniformlyControlledSingleBit (const std::vector< bitLenInt > &controls, bitLenInt qubitIndex, const complex *mtrxs, const std::vector< bitCapInt > &mtrxSkipPowers, bitCapInt mtrxSkipValueMask)
 
void UniformParityRZ (bitCapInt mask, real1_f angle)
 If the target qubit set parity is odd, this applies a phase factor of \(e^{i angle}\). More...
 
void CUniformParityRZ (const std::vector< bitLenInt > &controls, bitCapInt mask, real1_f angle)
 If the controls are set and the target qubit set parity is odd, this applies a phase factor of \(e^{i angle}\). More...
 
void X (bitLenInt target)
 NOT gate, which is also Pauli x matrix. More...
 
void Z (bitLenInt target)
 Apply Pauli Z matrix to bit. More...
 
void Invert (complex topRight, complex bottomLeft, bitLenInt qubitIndex)
 Apply a single bit transformation that reverses bit probability and might effect phase. More...
 
void Phase (complex topLeft, complex bottomRight, bitLenInt qubitIndex)
 Apply a single bit transformation that only effects phase. More...
 
void XMask (bitCapInt mask)
 Masked X gate. More...
 
void PhaseParity (real1_f radians, bitCapInt mask)
 Parity phase gate. More...
 
bitLenInt Compose (QEngineOCLPtr toCopy)
 
bitLenInt Compose (QInterfacePtr toCopy)
 Combine another QInterface with this one, after the last bit index of this one. More...
 
bitLenInt Compose (QEngineOCLPtr toCopy, bitLenInt start)
 
bitLenInt Compose (QInterfacePtr toCopy, bitLenInt start)
 
void Decompose (bitLenInt start, QInterfacePtr dest)
 Minimally decompose a set of contiguous bits from the separably composed unit, into "destination". More...
 
void Dispose (bitLenInt start, bitLenInt length)
 Minimally decompose a set of contiguous bits from the separably composed unit, and discard the separable bits from index "start" for "length.". More...
 
void Dispose (bitLenInt start, bitLenInt length, bitCapInt disposedPerm)
 Dispose a a contiguous set of qubits that are already in a permutation eigenstate. More...
 
bitLenInt Allocate (bitLenInt start, bitLenInt length)
 Allocate new "length" count of |0> state qubits at specified qubit index start position. More...
 
void ROL (bitLenInt shift, bitLenInt start, bitLenInt length)
 "Circular shift left" - shift bits left, and carry last bits. More...
 
void INC (bitCapInt toAdd, bitLenInt start, bitLenInt length)
 Increment integer (without sign, with carry) More...
 
void CINC (bitCapInt toAdd, bitLenInt inOutStart, bitLenInt length, const std::vector< bitLenInt > &controls)
 Add integer (without sign, with controls) More...
 
void INCS (bitCapInt toAdd, bitLenInt start, bitLenInt length, bitLenInt carryIndex)
 Increment integer (without sign, with carry) More...
 
void INCBCD (bitCapInt toAdd, bitLenInt start, bitLenInt length)
 Increment integer (BCD) More...
 
void MUL (bitCapInt toMul, bitLenInt inOutStart, bitLenInt carryStart, bitLenInt length)
 Multiply by integer. More...
 
void DIV (bitCapInt toDiv, bitLenInt inOutStart, bitLenInt carryStart, bitLenInt length)
 Divide by integer. More...
 
void MULModNOut (bitCapInt toMul, bitCapInt modN, bitLenInt inStart, bitLenInt outStart, bitLenInt length)
 Multiplication modulo N by integer, (out of place) More...
 
void IMULModNOut (bitCapInt toMul, bitCapInt modN, bitLenInt inStart, bitLenInt outStart, bitLenInt length)
 Inverse of multiplication modulo N by integer, (out of place) More...
 
void POWModNOut (bitCapInt base, bitCapInt modN, bitLenInt inStart, bitLenInt outStart, bitLenInt length)
 Raise a classical base to a quantum power, modulo N, (out of place) More...
 
void CMUL (bitCapInt toMul, bitLenInt inOutStart, bitLenInt carryStart, bitLenInt length, const std::vector< bitLenInt > &controls)
 Controlled multiplication by integer. More...
 
void CDIV (bitCapInt toDiv, bitLenInt inOutStart, bitLenInt carryStart, bitLenInt length, const std::vector< bitLenInt > &controls)
 Controlled division by integer. More...
 
void CMULModNOut (bitCapInt toMul, bitCapInt modN, bitLenInt inStart, bitLenInt outStart, bitLenInt length, const std::vector< bitLenInt > &controls)
 Controlled multiplication modulo N by integer, (out of place) More...
 
void CIMULModNOut (bitCapInt toMul, bitCapInt modN, bitLenInt inStart, bitLenInt outStart, bitLenInt length, const std::vector< bitLenInt > &controls)
 Inverse of controlled multiplication modulo N by integer, (out of place) More...
 
void CPOWModNOut (bitCapInt base, bitCapInt modN, bitLenInt inStart, bitLenInt outStart, bitLenInt length, const std::vector< bitLenInt > &controls)
 Controlled multiplication modulo N by integer, (out of place) More...
 
void FullAdd (bitLenInt inputBit1, bitLenInt inputBit2, bitLenInt carryInSumOut, bitLenInt carryOut)
 Quantum analog of classical "Full Adder" gate. More...
 
void IFullAdd (bitLenInt inputBit1, bitLenInt inputBit2, bitLenInt carryInSumOut, bitLenInt carryOut)
 Inverse of FullAdd. More...
 
bitCapInt IndexedLDA (bitLenInt indexStart, bitLenInt indexLength, bitLenInt valueStart, bitLenInt valueLength, const unsigned char *values, bool resetValue=true)
 Set 8 bit register bits based on read from classical memory. More...
 
bitCapInt IndexedADC (bitLenInt indexStart, bitLenInt indexLength, bitLenInt valueStart, bitLenInt valueLength, bitLenInt carryIndex, const unsigned char *values)
 Add based on an indexed load from classical memory. More...
 
bitCapInt IndexedSBC (bitLenInt indexStart, bitLenInt indexLength, bitLenInt valueStart, bitLenInt valueLength, bitLenInt carryIndex, const unsigned char *values)
 Subtract based on an indexed load from classical memory. More...
 
void Hash (bitLenInt start, bitLenInt length, const unsigned char *values)
 Set 8 bit register bits based on read from classical memory. More...
 
void CPhaseFlipIfLess (bitCapInt greaterPerm, bitLenInt start, bitLenInt length, bitLenInt flagIndex)
 The 6502 uses its carry flag also as a greater-than/less-than flag, for the CMP operation. More...
 
void PhaseFlipIfLess (bitCapInt greaterPerm, bitLenInt start, bitLenInt length)
 This is an expedient for an adaptive Grover's search for a function's global minimum. More...
 
real1_f Prob (bitLenInt qubit)
 PSEUDO-QUANTUM Direct measure of bit probability to be in |1> state. More...
 
real1_f CtrlOrAntiProb (bool controlState, bitLenInt control, bitLenInt target)
 
real1_f ProbReg (bitLenInt start, bitLenInt length, bitCapInt permutation)
 Direct measure of register permutation probability. More...
 
void ProbRegAll (bitLenInt start, bitLenInt length, real1 *probsArray)
 
real1_f ProbMask (bitCapInt mask, bitCapInt permutation)
 Direct measure of masked permutation probability. More...
 
void ProbMaskAll (bitCapInt mask, real1 *probsArray)
 Direct measure of masked permutation probability. More...
 
real1_f ProbParity (bitCapInt mask)
 Overall probability of any odd permutation of the masked set of bits. More...
 
bool ForceMParity (bitCapInt mask, bool result, bool doForce=true)
 Act as if is a measurement of parity of the masked set of qubits was applied, except force the (usually random) result. More...
 
real1_f ExpectationBitsAll (const std::vector< bitLenInt > &bits, bitCapInt offset=0)
 Get permutation expectation value of bits. More...
 
void SetDevice (int64_t dID)
 Set GPU device ID. More...
 
int64_t GetDevice ()
 Get GPU device ID. More...
 
void SetQuantumState (const complex *inputState)
 Set arbitrary pure quantum state, in unsigned int permutation basis. More...
 
void GetQuantumState (complex *outputState)
 Get pure quantum state, in unsigned int permutation basis. More...
 
void GetProbs (real1 *outputProbs)
 Get all probabilities, in unsigned int permutation basis. More...
 
bitCapInt MAll ()
 Measure permutation state of all coherent bits. More...
 
complex GetAmplitude (bitCapInt perm)
 Get the representational amplitude of a full permutation. More...
 
void SetAmplitude (bitCapInt perm, complex amp)
 Sets the representational amplitude of a full permutation. More...
 
real1_f SumSqrDiff (QInterfacePtr toCompare)
 
real1_f SumSqrDiff (QEngineOCLPtr toCompare)
 
void NormalizeState (real1_f nrm=REAL1_DEFAULT_ARG, real1_f norm_thresh=REAL1_DEFAULT_ARG, real1_f phaseArg=ZERO_R1_F)
 Apply the normalization factor found by UpdateRunningNorm() or on the fly by a single bit gate. More...
 
void UpdateRunningNorm (real1_f norm_thresh=REAL1_DEFAULT_ARG)
 Force a calculation of the norm of the state vector, in order to make it unit length before the next probability or measurement operation. More...
 
void Finish ()
 If asynchronous work is still running, block until it finishes. More...
 
bool isFinished ()
 Returns "false" if asynchronous work is still running, and "true" if all previously dispatched asynchronous work is done. More...
 
QInterfacePtr Clone ()
 Clone this QInterface. More...
 
void PopQueue (bool isDispatch)
 
void DispatchQueue ()
 
virtual void X (bitLenInt q)
 
virtual void X (bitLenInt qubit)
 X gate. More...
 
virtual void X (bitLenInt start, bitLenInt length)
 Bitwise Pauli X (or logical "NOT") operator. More...
 
virtual QInterfacePtr Decompose (bitLenInt start, bitLenInt length)
 
virtual void Decompose (bitLenInt start, QInterfacePtr dest)=0
 Minimally decompose a set of contiguous bits from the separably composed unit, into "destination". More...
 
virtual QInterfacePtr Decompose (bitLenInt start, bitLenInt length)=0
 Schmidt decompose a length of qubits. More...
 
- Public Member Functions inherited from Qrack::QEngine
 QEngine (bitLenInt qBitCount, qrack_rand_gen_ptr rgp=nullptr, bool doNorm=false, bool randomGlobalPhase=true, bool useHostMem=false, bool useHardwareRNG=true, real1_f norm_thresh=REAL1_EPSILON)
 
 QEngine ()
 Default constructor, primarily for protected internal use. More...
 
virtual ~QEngine ()
 
virtual void SetQubitCount (bitLenInt qb)
 
virtual real1_f GetRunningNorm ()
 Get in-flight renormalization factor. More...
 
virtual void ResetHostPtr ()
 Reset host/device state vector bufffer usage to default. More...
 
virtual void ZMask (bitCapInt mask)
 Masked Z gate. More...
 
virtual bool ForceM (bitLenInt qubitIndex, bool result, bool doForce=true, bool doApply=true)
 PSEUDO-QUANTUM - Acts like a measurement gate, except with a specified forced result. More...
 
virtual bitCapInt ForceM (const std::vector< bitLenInt > &bits, const std::vector< bool > &values, bool doApply=true)
 Measure permutation state of a register. More...
 
virtual bitCapInt ForceMReg (bitLenInt start, bitLenInt length, bitCapInt result, bool doForce=true, bool doApply=true)
 Measure permutation state of a register. More...
 
virtual void Mtrx (complex const *mtrx, bitLenInt qubit)
 Apply an arbitrary single bit unitary transformation. More...
 
virtual void MCMtrx (const std::vector< bitLenInt > &controls, complex const *mtrx, bitLenInt target)
 Apply an arbitrary single bit unitary transformation, with arbitrary control bits. More...
 
virtual void MACMtrx (const std::vector< bitLenInt > &controls, complex const *mtrx, bitLenInt target)
 Apply an arbitrary single bit unitary transformation, with arbitrary (anti-)control bits. More...
 
virtual void UCMtrx (const std::vector< bitLenInt > &controls, const complex *mtrx, bitLenInt target, bitCapInt controlPerm)
 Apply an arbitrary single bit unitary transformation, with arbitrary control bits, with arbitary control permutation. More...
 
virtual void CSwap (const std::vector< bitLenInt > &controls, bitLenInt qubit1, bitLenInt qubit2)
 Apply a swap with arbitrary control bits. More...
 
virtual void AntiCSwap (const std::vector< bitLenInt > &controls, bitLenInt qubit1, bitLenInt qubit2)
 Apply a swap with arbitrary (anti) control bits. More...
 
virtual void CSqrtSwap (const std::vector< bitLenInt > &controls, bitLenInt qubit1, bitLenInt qubit2)
 Apply a square root of swap with arbitrary control bits. More...
 
virtual void AntiCSqrtSwap (const std::vector< bitLenInt > &controls, bitLenInt qubit1, bitLenInt qubit2)
 Apply a square root of swap with arbitrary (anti) control bits. More...
 
virtual void CISqrtSwap (const std::vector< bitLenInt > &controls, bitLenInt qubit1, bitLenInt qubit2)
 Apply an inverse square root of swap with arbitrary control bits. More...
 
virtual void AntiCISqrtSwap (const std::vector< bitLenInt > &controls, bitLenInt qubit1, bitLenInt qubit2)
 Apply an inverse square root of swap with arbitrary (anti) control bits. More...
 
virtual bool M (bitLenInt q)
 
virtual void DEC (bitCapInt toSub, bitLenInt start, bitLenInt length)
 Add integer (without sign) More...
 
virtual void INCC (bitCapInt toAdd, bitLenInt start, bitLenInt length, bitLenInt carryIndex)
 Add integer (without sign, with carry) More...
 
virtual void DECC (bitCapInt toSub, bitLenInt start, bitLenInt length, bitLenInt carryIndex)
 Subtract classical integer (without sign, with carry) More...
 
virtual void DECS (bitCapInt toSub, bitLenInt start, bitLenInt length, bitLenInt overflowIndex)
 Add a classical integer to the register, with sign and without carry. More...
 
virtual void CDEC (bitCapInt toSub, bitLenInt inOutStart, bitLenInt length, const std::vector< bitLenInt > &controls)
 Subtract integer (without sign, with controls) More...
 
virtual void Swap (bitLenInt qubit1, bitLenInt qubit2)
 Swap values of two bits in register. More...
 
virtual void ISwap (bitLenInt qubit1, bitLenInt qubit2)
 Swap values of two bits in register, and apply phase factor of i if bits are different. More...
 
virtual void IISwap (bitLenInt qubit1, bitLenInt qubit2)
 Inverse ISwap - Swap values of two bits in register, and apply phase factor of -i if bits are different. More...
 
virtual void SqrtSwap (bitLenInt qubit1, bitLenInt qubit2)
 Square root of Swap gate. More...
 
virtual void ISqrtSwap (bitLenInt qubit1, bitLenInt qubit2)
 Inverse square root of Swap gate. More...
 
virtual void FSim (real1_f theta, real1_f phi, bitLenInt qubitIndex1, bitLenInt qubitIndex2)
 The 2-qubit "fSim" gate, (useful in the simulation of particles with fermionic statistics) More...
 
virtual real1_f ProbAll (bitCapInt fullRegister)
 Direct measure of full permutation probability. More...
 
virtual real1_f CProb (bitLenInt control, bitLenInt target)
 Direct measure of bit probability to be in |1> state, if control bit is |1>. More...
 
virtual real1_f ACProb (bitLenInt control, bitLenInt target)
 Direct measure of bit probability to be in |1> state, if control bit is |0>. More...
 
virtual void ApplyControlled2x2 (const std::vector< bitLenInt > &controls, bitLenInt target, complex const *mtrx)
 
virtual void ApplyAntiControlled2x2 (const std::vector< bitLenInt > &controls, bitLenInt target, complex const *mtrx)
 
virtual QInterfacePtr Decompose (bitLenInt start, bitLenInt length)
 Schmidt decompose a length of qubits. More...
 
virtual std::map< bitCapInt, int > MultiShotMeasureMask (const std::vector< bitCapInt > &qPowers, unsigned shots)
 Statistical measure of masked permutation probability. More...
 
virtual void MultiShotMeasureMask (const std::vector< bitCapInt > &qPowers, unsigned shots, unsigned long long *shotsArray)
 Statistical measure of masked permutation probability (returned as array) More...
 
virtual bool M (bitLenInt qubitIndex)
 Measurement gate. More...
 
virtual bitCapInt M (const std::vector< bitLenInt > &bits)
 Measure bits with indices in array, and return a mask of the results. More...
 
virtual void X (bitLenInt qubit)
 X gate. More...
 
virtual void X (bitLenInt start, bitLenInt length)
 Bitwise Pauli X (or logical "NOT") operator. More...
 
virtual void Swap (bitLenInt qubitIndex1, bitLenInt qubitIndex2)
 Swap values of two bits in register. More...
 
virtual void ISwap (bitLenInt qubitIndex1, bitLenInt qubitIndex2)
 Swap values of two bits in register, and apply phase factor of i if bits are different. More...
 
virtual void IISwap (bitLenInt qubitIndex1, bitLenInt qubitIndex2)
 Inverse ISwap - Swap values of two bits in register, and apply phase factor of -i if bits are different. More...
 
virtual void SqrtSwap (bitLenInt qubitIndex1, bitLenInt qubitIndex2)
 Square root of Swap gate. More...
 
virtual void ISqrtSwap (bitLenInt qubitIndex1, bitLenInt qubitIndex2)
 Inverse square root of Swap gate. More...
 
virtual void FSim (real1_f theta, real1_f phi, bitLenInt qubitIndex1, bitLenInt qubitIndex2)=0
 The 2-qubit "fSim" gate, (useful in the simulation of particles with fermionic statistics) More...
 
virtual void Decompose (bitLenInt start, QInterfacePtr dest)=0
 Minimally decompose a set of contiguous bits from the separably composed unit, into "destination". More...
 
virtual QInterfacePtr Decompose (bitLenInt start, bitLenInt length)=0
 Schmidt decompose a length of qubits. More...
 
- Public Member Functions inherited from Qrack::QAlu
virtual void INCSC (bitCapInt toAdd, bitLenInt start, bitLenInt length, bitLenInt overflowIndex, bitLenInt carryIndex)
 Add a classical integer to the register, with sign and with carry. More...
 
virtual void INCSC (bitCapInt toAdd, bitLenInt start, bitLenInt length, bitLenInt carryIndex)
 Add a classical integer to the register, with sign and with (phase-based) carry. More...
 
virtual void DECSC (bitCapInt toSub, bitLenInt start, bitLenInt length, bitLenInt overflowIndex, bitLenInt carryIndex)
 Subtract a classical integer from the register, with sign and with carry. More...
 
virtual void DECSC (bitCapInt toSub, bitLenInt start, bitLenInt length, bitLenInt carryIndex)
 Subtract a classical integer from the register, with sign and with carry. More...
 
virtual void DECBCD (bitCapInt toSub, bitLenInt start, bitLenInt length)
 Subtract classical BCD integer (without sign) More...
 
virtual void INCBCDC (bitCapInt toAdd, bitLenInt start, bitLenInt length, bitLenInt carryIndex)
 Add classical BCD integer (without sign, with carry) More...
 
virtual void DECBCDC (bitCapInt toSub, bitLenInt start, bitLenInt length, bitLenInt carryIndex)
 Subtract BCD integer (without sign, with carry) More...
 
- Public Member Functions inherited from Qrack::QParity
virtual bool MParity (bitCapInt mask)
 Measure (and collapse) parity of the masked set of qubits. More...
 
- Public Member Functions inherited from Qrack::QInterface
 QInterface (bitLenInt n, qrack_rand_gen_ptr rgp=nullptr, bool doNorm=false, bool useHardwareRNG=true, bool randomGlobalPhase=true, real1_f norm_thresh=REAL1_EPSILON)
 
 QInterface ()
 Default constructor, primarily for protected internal use. More...
 
virtual ~QInterface ()
 
void SetRandomSeed (uint32_t seed)
 
virtual void SetConcurrency (uint32_t threadsPerEngine)
 Set the number of threads in parallel for loops, per component QEngine. More...
 
virtual bitLenInt GetQubitCount ()
 Get the count of bits in this register. More...
 
virtual bitCapInt GetMaxQPower ()
 Get the maximum number of basis states, namely \( 2^n \) for \( n \) qubits. More...
 
virtual bool GetIsArbitraryGlobalPhase ()
 
real1_f Rand ()
 Generate a random real number between 0 and 1. More...
 
virtual bitLenInt ComposeNoClone (QInterfacePtr toCopy)
 
virtual std::map< QInterfacePtr, bitLenIntCompose (std::vector< QInterfacePtr > toCopy)
 
virtual bitLenInt Allocate (bitLenInt length)
 Allocate new "length" count of |0> state qubits at end of qubit index position. More...
 
virtual void MCPhase (const std::vector< bitLenInt > &controls, complex topLeft, complex bottomRight, bitLenInt target)
 Apply a single bit transformation that only effects phase, with arbitrary control bits. More...
 
virtual void MCInvert (const std::vector< bitLenInt > &controls, complex topRight, complex bottomLeft, bitLenInt target)
 Apply a single bit transformation that reverses bit probability and might effect phase, with arbitrary control bits. More...
 
virtual void MACPhase (const std::vector< bitLenInt > &controls, complex topLeft, complex bottomRight, bitLenInt target)
 Apply a single bit transformation that only effects phase, with arbitrary (anti-)control bits. More...
 
virtual void MACInvert (const std::vector< bitLenInt > &controls, complex topRight, complex bottomLeft, bitLenInt target)
 Apply a single bit transformation that reverses bit probability and might effect phase, with arbitrary (anti-)control bits. More...
 
virtual void UCPhase (const std::vector< bitLenInt > &controls, complex topLeft, complex bottomRight, bitLenInt target, bitCapInt perm)
 Apply a single bit transformation that only effects phase, with arbitrary control bits, with arbitrary control permutation. More...
 
virtual void UCInvert (const std::vector< bitLenInt > &controls, complex topRight, complex bottomLeft, bitLenInt target, bitCapInt perm)
 Apply a single bit transformation that reverses bit probability and might effect phase, with arbitrary control bits, with arbitrary control permutation. More...
 
virtual void UniformlyControlledSingleBit (const std::vector< bitLenInt > &controls, bitLenInt qubitIndex, const complex *mtrxs)
 Apply a "uniformly controlled" arbitrary single bit unitary transformation. More...
 
virtual void TimeEvolve (Hamiltonian h, real1_f timeDiff)
 To define a Hamiltonian, give a vector of controlled single bit gates ("HamiltonianOp" instances) that are applied by left-multiplication in low-to-high vector index order on the state vector. More...
 
virtual void CCNOT (bitLenInt control1, bitLenInt control2, bitLenInt target)
 Doubly-controlled NOT gate. More...
 
virtual void AntiCCNOT (bitLenInt control1, bitLenInt control2, bitLenInt target)
 Anti doubly-controlled NOT gate. More...
 
virtual void CNOT (bitLenInt control, bitLenInt target)
 Controlled NOT gate. More...
 
virtual void AntiCNOT (bitLenInt control, bitLenInt target)
 Anti controlled NOT gate. More...
 
virtual void CY (bitLenInt control, bitLenInt target)
 Controlled Y gate. More...
 
virtual void AntiCY (bitLenInt control, bitLenInt target)
 Anti controlled Y gate. More...
 
virtual void CCY (bitLenInt control1, bitLenInt control2, bitLenInt target)
 Doubly-Controlled Y gate. More...
 
virtual void AntiCCY (bitLenInt control1, bitLenInt control2, bitLenInt target)
 Anti doubly-controlled Y gate. More...
 
virtual void CZ (bitLenInt control, bitLenInt target)
 Controlled Z gate. More...
 
virtual void AntiCZ (bitLenInt control, bitLenInt target)
 Anti controlled Z gate. More...
 
virtual void CCZ (bitLenInt control1, bitLenInt control2, bitLenInt target)
 Doubly-Controlled Z gate. More...
 
virtual void AntiCCZ (bitLenInt control1, bitLenInt control2, bitLenInt target)
 Anti doubly-controlled Z gate. More...
 
virtual void U (bitLenInt target, real1_f theta, real1_f phi, real1_f lambda)
 General unitary gate. More...
 
virtual void U2 (bitLenInt target, real1_f phi, real1_f lambda)
 2-parameter unitary gate More...
 
virtual void IU2 (bitLenInt target, real1_f phi, real1_f lambda)
 Inverse 2-parameter unitary gate. More...
 
virtual void AI (bitLenInt target, real1_f azimuth, real1_f inclination)
 "Azimuth, Inclination" (RY-RZ) More...
 
virtual void IAI (bitLenInt target, real1_f azimuth, real1_f inclination)
 Invert "Azimuth, Inclination" (RY-RZ) More...
 
virtual void CAI (bitLenInt control, bitLenInt target, real1_f azimuth, real1_f inclination)
 Controlled "Azimuth, Inclination" (RY-RZ) More...
 
virtual void AntiCAI (bitLenInt control, bitLenInt target, real1_f azimuth, real1_f inclination)
 (Anti-)Controlled "Azimuth, Inclination" (RY-RZ) More...
 
virtual void CIAI (bitLenInt control, bitLenInt target, real1_f azimuth, real1_f inclination)
 Controlled inverse "Azimuth, Inclination" (RY-RZ) More...
 
virtual void AntiCIAI (bitLenInt control, bitLenInt target, real1_f azimuth, real1_f inclination)
 (Anti-)Controlled inverse "Azimuth, Inclination" (RY-RZ) More...
 
virtual void CU (const std::vector< bitLenInt > &controls, bitLenInt target, real1_f theta, real1_f phi, real1_f lambda)
 Controlled general unitary gate. More...
 
virtual void AntiCU (const std::vector< bitLenInt > &controls, bitLenInt target, real1_f theta, real1_f phi, real1_f lambda)
 (Anti-)Controlled general unitary gate More...
 
virtual void H (bitLenInt qubit)
 Hadamard gate. More...
 
virtual void SqrtH (bitLenInt qubit)
 Square root of Hadamard gate. More...
 
virtual void SH (bitLenInt qubit)
 Y-basis transformation gate. More...
 
virtual void HIS (bitLenInt qubit)
 Y-basis (inverse) transformation gate. More...
 
virtual void S (bitLenInt qubit)
 S gate. More...
 
virtual void IS (bitLenInt qubit)
 Inverse S gate. More...
 
virtual void T (bitLenInt qubit)
 T gate. More...
 
virtual void IT (bitLenInt qubit)
 Inverse T gate. More...
 
virtual void PhaseRootN (bitLenInt n, bitLenInt qubit)
 "PhaseRootN" gate More...
 
virtual void IPhaseRootN (bitLenInt n, bitLenInt qubit)
 Inverse "PhaseRootN" gate. More...
 
virtual void Y (bitLenInt qubit)
 Y gate. More...
 
virtual void YMask (bitCapInt mask)
 Masked Y gate. More...
 
virtual void SqrtX (bitLenInt qubit)
 Square root of X gate. More...
 
virtual void ISqrtX (bitLenInt qubit)
 Inverse square root of X gate. More...
 
virtual void SqrtY (bitLenInt qubit)
 Square root of Y gate. More...
 
virtual void ISqrtY (bitLenInt qubit)
 Inverse square root of Y gate. More...
 
virtual void SqrtW (bitLenInt qubit)
 Square root of W gate. More...
 
virtual void ISqrtW (bitLenInt qubit)
 Inverse square root of W gate. More...
 
virtual void CH (bitLenInt control, bitLenInt target)
 Controlled H gate. More...
 
virtual void AntiCH (bitLenInt control, bitLenInt target)
 (Anti-)controlled H gate More...
 
virtual void CS (bitLenInt control, bitLenInt target)
 Controlled S gate. More...
 
virtual void AntiCS (bitLenInt control, bitLenInt target)
 (Anti-)controlled S gate More...
 
virtual void CIS (bitLenInt control, bitLenInt target)
 Controlled inverse S gate. More...
 
virtual void AntiCIS (bitLenInt control, bitLenInt target)
 (Anti-)controlled inverse S gate More...
 
virtual void CT (bitLenInt control, bitLenInt target)
 Controlled T gate. More...
 
virtual void CIT (bitLenInt control, bitLenInt target)
 Controlled inverse T gate. More...
 
virtual void CPhaseRootN (bitLenInt n, bitLenInt control, bitLenInt target)
 Controlled "PhaseRootN" gate. More...
 
virtual void AntiCPhaseRootN (bitLenInt n, bitLenInt control, bitLenInt target)
 (Anti-)controlled "PhaseRootN" gate More...
 
virtual void CIPhaseRootN (bitLenInt n, bitLenInt control, bitLenInt target)
 Controlled inverse "PhaseRootN" gate. More...
 
virtual void AntiCIPhaseRootN (bitLenInt n, bitLenInt control, bitLenInt target)
 (Anti-)controlled inverse "PhaseRootN" gate More...
 
virtual void AND (bitLenInt inputBit1, bitLenInt inputBit2, bitLenInt outputBit)
 Quantum analog of classical "AND" gate. More...
 
virtual void OR (bitLenInt inputBit1, bitLenInt inputBit2, bitLenInt outputBit)
 Quantum analog of classical "OR" gate. More...
 
virtual void XOR (bitLenInt inputBit1, bitLenInt inputBit2, bitLenInt outputBit)
 Quantum analog of classical "XOR" gate. More...
 
virtual void CLAND (bitLenInt inputQBit, bool inputClassicalBit, bitLenInt outputBit)
 Quantum analog of classical "AND" gate. More...
 
virtual void CLOR (bitLenInt inputQBit, bool inputClassicalBit, bitLenInt outputBit)
 Quantum analog of classical "OR" gate. More...
 
virtual void CLXOR (bitLenInt inputQBit, bool inputClassicalBit, bitLenInt outputBit)
 Quantum analog of classical "XOR" gate. More...
 
virtual void NAND (bitLenInt inputBit1, bitLenInt inputBit2, bitLenInt outputBit)
 Quantum analog of classical "NAND" gate. More...
 
virtual void NOR (bitLenInt inputBit1, bitLenInt inputBit2, bitLenInt outputBit)
 Quantum analog of classical "NOR" gate. More...
 
virtual void XNOR (bitLenInt inputBit1, bitLenInt inputBit2, bitLenInt outputBit)
 Quantum analog of classical "XNOR" gate. More...
 
virtual void CLNAND (bitLenInt inputQBit, bool inputClassicalBit, bitLenInt outputBit)
 Quantum analog of classical "NAND" gate. More...
 
virtual void CLNOR (bitLenInt inputQBit, bool inputClassicalBit, bitLenInt outputBit)
 Quantum analog of classical "NOR" gate. More...
 
virtual void CLXNOR (bitLenInt inputQBit, bool inputClassicalBit, bitLenInt outputBit)
 Quantum analog of classical "XNOR" gate. More...
 
virtual void UniformlyControlledRY (const std::vector< bitLenInt > &controls, bitLenInt qubitIndex, real1 const *angles)
 Apply a "uniformly controlled" rotation of a bit around the Pauli Y axis. More...
 
virtual void UniformlyControlledRZ (const std::vector< bitLenInt > &controls, bitLenInt qubitIndex, real1 const *angles)
 Apply a "uniformly controlled" rotation of a bit around the Pauli Z axis. More...
 
virtual void RT (real1_f radians, bitLenInt qubitIndex)
 Phase shift gate. More...
 
virtual void RX (real1_f radians, bitLenInt qubitIndex)
 X axis rotation gate. More...
 
virtual void RY (real1_f radians, bitLenInt qubitIndex)
 Y axis rotation gate. More...
 
virtual void RZ (real1_f radians, bitLenInt qubitIndex)
 Z axis rotation gate. More...
 
virtual void CRZ (real1_f radians, bitLenInt control, bitLenInt target)
 Controlled Z axis rotation gate. More...
 
virtual void CRY (real1_f radians, bitLenInt control, bitLenInt target)
 Controlled Y axis rotation gate. More...
 
virtual void RTDyad (int numerator, int denomPower, bitLenInt qubitIndex)
 Dyadic fraction phase shift gate. More...
 
virtual void RXDyad (int numerator, int denomPower, bitLenInt qubitIndex)
 Dyadic fraction X axis rotation gate. More...
 
virtual void Exp (real1_f radians, bitLenInt qubitIndex)
 (Identity) Exponentiation gate More...
 
virtual void Exp (const std::vector< bitLenInt > &controls, bitLenInt qubit, const complex *matrix2x2, bool antiCtrled=false)
 Imaginary exponentiation of arbitrary 2x2 gate. More...
 
virtual void ExpDyad (int numerator, int denomPower, bitLenInt qubitIndex)
 Dyadic fraction (identity) exponentiation gate. More...
 
virtual void ExpX (real1_f radians, bitLenInt qubitIndex)
 Pauli X exponentiation gate. More...
 
virtual void ExpXDyad (int numerator, int denomPower, bitLenInt qubitIndex)
 Dyadic fraction Pauli X exponentiation gate. More...
 
virtual void ExpY (real1_f radians, bitLenInt qubitIndex)
 Pauli Y exponentiation gate. More...
 
virtual void ExpYDyad (int numerator, int denomPower, bitLenInt qubitIndex)
 Dyadic fraction Pauli Y exponentiation gate. More...
 
virtual void ExpZ (real1_f radians, bitLenInt qubitIndex)
 Pauli Z exponentiation gate. More...
 
virtual void ExpZDyad (int numerator, int denomPower, bitLenInt qubitIndex)
 Dyadic fraction Pauli Z exponentiation gate. More...
 
virtual void CRX (real1_f radians, bitLenInt control, bitLenInt target)
 Controlled X axis rotation gate. More...
 
virtual void CRXDyad (int numerator, int denomPower, bitLenInt control, bitLenInt target)
 Controlled dyadic fraction X axis rotation gate. More...
 
virtual void RYDyad (int numerator, int denomPower, bitLenInt qubitIndex)
 Dyadic fraction Y axis rotation gate. More...
 
virtual void CRYDyad (int numerator, int denomPower, bitLenInt control, bitLenInt target)
 Controlled dyadic fraction y axis rotation gate. More...
 
virtual void RZDyad (int numerator, int denomPower, bitLenInt qubitIndex)
 Dyadic fraction Z axis rotation gate. More...
 
virtual void CRZDyad (int numerator, int denomPower, bitLenInt control, bitLenInt target)
 Controlled dyadic fraction Z axis rotation gate. More...
 
virtual void CRT (real1_f radians, bitLenInt control, bitLenInt target)
 Controlled "phase shift gate". More...
 
virtual void CRTDyad (int numerator, int denomPower, bitLenInt control, bitLenInt target)
 Controlled dyadic fraction "phase shift gate". More...
 
virtual void H (bitLenInt start, bitLenInt length)
 Bitwise Hadamard. More...
 
virtual void X (bitLenInt start, bitLenInt length)
 Bitwise Pauli X (or logical "NOT") operator. More...
 
virtual void ROR (bitLenInt shift, bitLenInt start, bitLenInt length)
 Circular shift right - shift bits right, and carry first bits. More...
 
virtual void ASL (bitLenInt shift, bitLenInt start, bitLenInt length)
 Arithmetic shift left, with last 2 bits as sign and carry. More...
 
virtual void ASR (bitLenInt shift, bitLenInt start, bitLenInt length)
 Arithmetic shift right, with last 2 bits as sign and carry. More...
 
virtual void LSL (bitLenInt shift, bitLenInt start, bitLenInt length)
 Logical shift left, filling the extra bits with |0> More...
 
virtual void LSR (bitLenInt shift, bitLenInt start, bitLenInt length)
 Logical shift right, filling the extra bits with |0> More...
 
virtual void CFullAdd (const std::vector< bitLenInt > &controls, bitLenInt inputBit1, bitLenInt inputBit2, bitLenInt carryInSumOut, bitLenInt carryOut)
 Controlled quantum analog of classical "Full Adder" gate. More...
 
virtual void CIFullAdd (const std::vector< bitLenInt > &controls, bitLenInt inputBit1, bitLenInt inputBit2, bitLenInt carryInSumOut, bitLenInt carryOut)
 Inverse of CFullAdd. More...
 
virtual void ADC (bitLenInt input1, bitLenInt input2, bitLenInt output, bitLenInt length, bitLenInt carry)
 Add a quantum integer to a quantum integer, with carry. More...
 
virtual void IADC (bitLenInt input1, bitLenInt input2, bitLenInt output, bitLenInt length, bitLenInt carry)
 Inverse of ADC. More...
 
virtual void CADC (const std::vector< bitLenInt > &controls, bitLenInt input1, bitLenInt input2, bitLenInt output, bitLenInt length, bitLenInt carry)
 Add a quantum integer to a quantum integer, with carry and with controls. More...
 
virtual void CIADC (const std::vector< bitLenInt > &controls, bitLenInt input1, bitLenInt input2, bitLenInt output, bitLenInt length, bitLenInt carry)
 Inverse of CADC. More...
 
virtual void QFT (bitLenInt start, bitLenInt length, bool trySeparate=false)
 Quantum Fourier Transform - Apply the quantum Fourier transform to the register. More...
 
virtual void QFTR (const std::vector< bitLenInt > &qubits, bool trySeparate=false)
 Quantum Fourier Transform (random access) - Apply the quantum Fourier transform to the register. More...
 
virtual void IQFT (bitLenInt start, bitLenInt length, bool trySeparate=false)
 Inverse Quantum Fourier Transform - Apply the inverse quantum Fourier transform to the register. More...
 
virtual void IQFTR (const std::vector< bitLenInt > &qubits, bool trySeparate=false)
 Inverse Quantum Fourier Transform (random access) - Apply the inverse quantum Fourier transform to the register. More...
 
virtual void ZeroPhaseFlip (bitLenInt start, bitLenInt length)
 Reverse the phase of the state where the register equals zero. More...
 
virtual void PhaseFlip ()
 Phase flip always - equivalent to Z X Z X on any bit in the QInterface. More...
 
virtual void SetReg (bitLenInt start, bitLenInt length, bitCapInt value)
 Set register bits to given permutation. More...
 
virtual bitCapInt MReg (bitLenInt start, bitLenInt length)
 Measure permutation state of a register. More...
 
virtual bitCapInt M (const std::vector< bitLenInt > &bits)
 Measure bits with indices in array, and return a mask of the results. More...
 
virtual void Reverse (bitLenInt first, bitLenInt last)
 Reverse all of the bits in a sequence. More...
 
virtual void ProbBitsAll (const std::vector< bitLenInt > &bits, real1 *probsArray)
 Direct measure of listed permutation probability. More...
 
virtual real1_f ExpectationBitsFactorized (const std::vector< bitLenInt > &bits, const std::vector< bitCapInt > &perms, bitCapInt offset=0U)
 Get expectation value of bits, given an array of qubit weights. More...
 
virtual real1_f ExpectationBitsFactorizedRdm (bool roundRz, const std::vector< bitLenInt > &bits, const std::vector< bitCapInt > &perms, bitCapInt offset=0)
 Get (reduced density matrix) expectation value of bits, given an array of qubit weights. More...
 
virtual real1_f ExpectationFloatsFactorized (const std::vector< bitLenInt > &bits, const std::vector< real1_f > &weights)
 Get expectation value of bits, given a (floating-point) array of qubit weights. More...
 
virtual real1_f ExpectationFloatsFactorizedRdm (bool roundRz, const std::vector< bitLenInt > &bits, const std::vector< real1_f > &weights)
 Get (reduced density matrix) expectation value of bits, given a (floating-point) array of qubit weights. More...
 
virtual real1_f ProbRdm (bitLenInt qubitIndex)
 Direct measure of bit probability to be in |1> state, treating all ancillary qubits as post-selected T gate gadgets. More...
 
virtual real1_f ProbAllRdm (bool roundRz, bitCapInt fullRegister)
 Direct measure of full permutation probability, treating all ancillary qubits as post-selected T gate gadgets. More...
 
virtual real1_f ProbMaskRdm (bool roundRz, bitCapInt mask, bitCapInt permutation)
 Direct measure of masked permutation probability, treating all ancillary qubits as post-selected T gate gadgets. More...
 
virtual real1_f ExpectationBitsAllRdm (bool roundRz, const std::vector< bitLenInt > &bits, bitCapInt offset=0U)
 Get permutation expectation value of bits, treating all ancillary qubits as post-selected T gate gadgets. More...
 
virtual void SetBit (bitLenInt qubit, bool value)
 Set individual bit to pure |0> (false) or |1> (true) state. More...
 
virtual bool ApproxCompare (QInterfacePtr toCompare, real1_f error_tol=TRYDECOMPOSE_EPSILON)
 Compare state vectors approximately, component by component, to determine whether this state vector is the same as the target. More...
 
virtual bool TryDecompose (bitLenInt start, QInterfacePtr dest, real1_f error_tol=TRYDECOMPOSE_EPSILON)
 
virtual void Dump ()
 If asynchronous work is still running, let the simulator know that it can be aborted. More...
 
virtual bool isBinaryDecisionTree ()
 Returns "true" if current state representation is definitely a binary decision tree, "false" if it is definitely not, or "true" if it cannot be determined. More...
 
virtual bool isClifford ()
 Returns "true" if current state is identifiably within the Clifford set, or "false" if it is not or cannot be determined. More...
 
virtual bool isClifford (bitLenInt qubit)
 Returns "true" if current qubit state is identifiably within the Clifford set, or "false" if it is not or cannot be determined. More...
 
virtual bool TrySeparate (const std::vector< bitLenInt > &qubits, real1_f error_tol)
 Qrack::QUnit types maintain explicit separation of representations of qubits, which reduces memory usage and increases gate speed. More...
 
virtual bool TrySeparate (bitLenInt qubit)
 Single-qubit TrySeparate() More...
 
virtual bool TrySeparate (bitLenInt qubit1, bitLenInt qubit2)
 Two-qubit TrySeparate() More...
 
virtual double GetUnitaryFidelity ()
 When "Schmidt-decomposition rounding parameter" ("SDRP") is being used, starting from initial 1.0 fidelity, we compound the "unitary fidelity" by successive multiplication by one minus two times the true unitary probability discarded in each single rounding event. More...
 
virtual void ResetUnitaryFidelity ()
 Reset the internal fidelity calculation tracker to 1.0. More...
 
virtual void SetSdrp (real1_f sdrp)
 Set the "Schmidt decomposition rounding parameter" value, (between 0 and 1) More...
 
virtual void SetReactiveSeparate (bool isAggSep)
 Set reactive separation option (on by default if available) More...
 
virtual bool GetReactiveSeparate ()
 Get reactive separation option. More...
 
virtual void SetTInjection (bool useGadget)
 Set the option to use T-injection gadgets (off by default) More...
 
virtual bool GetTInjection ()
 Get the option to use T-injection gadgets. More...
 
bitCapIntOcl GetMaxSize ()
 Get maximum number of amplitudes that can be allocated on current device. More...
 
virtual void DepolarizingChannelWeak1Qb (bitLenInt qubit, real1_f lambda)
 Simulate a local qubit depolarizing noise channel, under a stochastic "weak simulation condition." Under "weak" condition, sampling and exact state queries are not accurate, but sampling can be achieved via repeated full execution of a noisy circuit, for each hardware-realistic measurement sample. More...
 
virtual bitLenInt DepolarizingChannelStrong1Qb (bitLenInt qubit, real1_f lambda)
 Simulate a local qubit depolarizing noise channel, under a "strong simulation condition." "Strong" condition supports measurement sampling and direct queries of state, but the expression of state is in terms of one retained ancillary qubit per applied noise channel. More...
 
- Public Member Functions inherited from Qrack::ParallelFor
 ParallelFor ()
 
void SetConcurrencyLevel (unsigned num)
 
unsigned GetConcurrencyLevel ()
 
bitCapIntOcl GetStride ()
 
bitLenInt GetPreferredConcurrencyPower ()
 
void par_for_inc (const bitCapIntOcl begin, const bitCapIntOcl itemCount, IncrementFunc, ParallelFunc fn)
 Iterate through the permutations a maximum of end-begin times, allowing the caller to control the incrementation offset through 'inc'. More...
 
void par_for (const bitCapIntOcl begin, const bitCapIntOcl end, ParallelFunc fn)
 Call fn once for every numerical value between begin and end. More...
 
void par_for_skip (const bitCapIntOcl begin, const bitCapIntOcl end, const bitCapIntOcl skipPower, const bitLenInt skipBitCount, ParallelFunc fn)
 Skip over the skipPower bits. More...
 
void par_for_mask (const bitCapIntOcl, const bitCapIntOcl, const std::vector< bitCapIntOcl > &maskArray, ParallelFunc fn)
 Skip over the bits listed in maskArray in the same fashion as par_for_skip. More...
 
void par_for_set (const std::set< bitCapIntOcl > &sparseSet, ParallelFunc fn)
 Iterate over a sparse state vector. More...
 
void par_for_set (const std::vector< bitCapIntOcl > &sparseSet, ParallelFunc fn)
 Iterate over a sparse state vector. More...
 
void par_for_sparse_compose (const std::vector< bitCapIntOcl > &lowSet, const std::vector< bitCapIntOcl > &highSet, const bitLenInt &highStart, ParallelFunc fn)
 Iterate over the power set of 2 sparse state vectors. More...
 
real1_f par_norm (const bitCapIntOcl maxQPower, const StateVectorPtr stateArray, real1_f norm_thresh=ZERO_R1_F)
 Calculate the normal for the array, (with flooring). More...
 
real1_f par_norm_exact (const bitCapIntOcl maxQPower, const StateVectorPtr stateArray)
 Calculate the normal for the array, (without flooring.) More...
 

Static Public Attributes

static const bitCapIntOcl OclMemDenom = 3U
 1 / OclMemDenom is the maximum fraction of total OCL device RAM that a single state vector should occupy, by design of the QEngine. More...
 

Protected Member Functions

void checkCallbackError ()
 
void tryOcl (std::string message, std::function< int()> oclCall)
 
void AddAlloc (size_t size)
 
void SubtractAlloc (size_t size)
 
BufferPtr MakeBuffer (cl_mem_flags flags, size_t size, void *host_ptr=NULL)
 
real1_f GetExpectation (bitLenInt valueStart, bitLenInt valueLength)
 
std::shared_ptr< complexAllocStateVec (bitCapInt elemCount, bool doForceAlloc=false)
 
void FreeStateVec ()
 
void ResetStateBuffer (BufferPtr nStateBuffer)
 
BufferPtr MakeStateVecBuffer (std::shared_ptr< complex > nStateVec)
 
void ReinitBuffer ()
 
void Compose (OCLAPI apiCall, const bitCapIntOcl *bciArgs, QEngineOCLPtr toCopy)
 
void InitOCL (int64_t devID)
 
PoolItemPtr GetFreePoolItem ()
 
real1_f ParSum (real1 *toSum, bitCapIntOcl maxI)
 
void LockSync (cl_map_flags flags=(CL_MAP_READ|CL_MAP_WRITE))
 Locks synchronization between the state vector buffer and general RAM, so the state vector can be directly read and/or written to. More...
 
void UnlockSync ()
 Unlocks synchronization between the state vector buffer and general RAM, so the state vector can be operated on with OpenCL kernels and operations. More...
 
void clFinish (bool doHard=false)
 Finishes the asynchronous wait event list or queue of OpenCL events. More...
 
void clDump ()
 Dumps the remaining asynchronous wait event list or queue of OpenCL events, for the current queue. More...
 
size_t FixWorkItemCount (size_t maxI, size_t wic)
 
size_t FixGroupSize (size_t wic, size_t gs)
 
void DecomposeDispose (bitLenInt start, bitLenInt length, QEngineOCLPtr dest)
 
void Apply2x2 (bitCapIntOcl offset1, bitCapIntOcl offset2, const complex *mtrx, bitLenInt bitCount, const bitCapIntOcl *qPowersSorted, bool doCalcNorm, real1_f norm_thresh=REAL1_DEFAULT_ARG)
 
void Apply2x2 (bitCapIntOcl offset1, bitCapIntOcl offset2, const complex *mtrx, bitLenInt bitCount, const bitCapIntOcl *qPowersSorted, bool doCalcNorm, SPECIAL_2X2 special, real1_f norm_thresh=REAL1_DEFAULT_ARG)
 
void BitMask (bitCapIntOcl mask, OCLAPI api_call, real1_f phase=(real1_f) PI_R1)
 
void ApplyM (bitCapInt mask, bool result, complex nrm)
 
void ApplyM (bitCapInt mask, bitCapInt result, complex nrm)
 
void WaitCall (OCLAPI api_call, size_t workItemCount, size_t localGroupSize, std::vector< BufferPtr > args, size_t localBuffSize=0U)
 
EventVecPtr ResetWaitEvents (bool waitQueue=true)
 
void ApplyMx (OCLAPI api_call, const bitCapIntOcl *bciArgs, complex nrm)
 
real1_f Probx (OCLAPI api_call, const bitCapIntOcl *bciArgs)
 
void ArithmeticCall (OCLAPI api_call, const bitCapIntOcl(&bciArgs)[BCI_ARG_LEN], const unsigned char *values=NULL, bitCapIntOcl valuesLength=0U)
 
void CArithmeticCall (OCLAPI api_call, const bitCapIntOcl(&bciArgs)[BCI_ARG_LEN], bitCapIntOcl *controlPowers, bitLenInt controlLen, const unsigned char *values=NULL, bitCapIntOcl valuesLength=0U)
 
void ROx (OCLAPI api_call, bitLenInt shift, bitLenInt start, bitLenInt length)
 
void INCDECC (bitCapInt toMod, bitLenInt inOutStart, bitLenInt length, bitLenInt carryIndex)
 Common driver method behing INCC and DECC. More...
 
void INCDECSC (bitCapInt toMod, bitLenInt inOutStart, bitLenInt length, bitLenInt carryIndex)
 Increment integer (with sign, with carry) More...
 
void INCDECSC (bitCapInt toMod, bitLenInt inOutStart, bitLenInt length, bitLenInt overflowIndex, bitLenInt carryIndex)
 Increment integer (with sign, with carry) More...
 
void INCDECBCDC (bitCapInt toMod, bitLenInt inOutStart, bitLenInt length, bitLenInt carryIndex)
 Increment integer (BCD, with carry) More...
 
void INT (OCLAPI api_call, bitCapIntOcl toMod, bitLenInt inOutStart, bitLenInt length)
 Add or Subtract integer (without sign or carry) More...
 
void CINT (OCLAPI api_call, bitCapIntOcl toMod, bitLenInt start, bitLenInt length, const std::vector< bitLenInt > &controls)
 Add or Subtract integer (without sign or carry, with controls) More...
 
void INTC (OCLAPI api_call, bitCapIntOcl toMod, bitLenInt inOutStart, bitLenInt length, bitLenInt carryIndex)
 Add or Subtract integer (without sign, with carry) More...
 
void INTS (OCLAPI api_call, bitCapIntOcl toMod, bitLenInt inOutStart, bitLenInt length, bitLenInt overflowIndex)
 Add or Subtract integer (with overflow, without carry) More...
 
void INTSC (OCLAPI api_call, bitCapIntOcl toMod, bitLenInt inOutStart, bitLenInt length, bitLenInt carryIndex)
 Add or Subtract integer (with sign, with carry) More...
 
void INTSC (OCLAPI api_call, bitCapIntOcl toMod, bitLenInt inOutStart, bitLenInt length, bitLenInt overflowIndex, bitLenInt carryIndex)
 Add or Subtract integer (with sign, with carry) More...
 
void INTBCD (OCLAPI api_call, bitCapIntOcl toMod, bitLenInt inOutStart, bitLenInt length)
 Add or Subtract integer (BCD) More...
 
void INTBCDC (OCLAPI api_call, bitCapIntOcl toMod, bitLenInt inOutStart, bitLenInt length, bitLenInt carryIndex)
 Add or Subtract integer (BCD, with carry) More...
 
void xMULx (OCLAPI api_call, const bitCapIntOcl *bciArgs, BufferPtr controlBuffer)
 
void MULx (OCLAPI api_call, bitCapIntOcl toMod, bitLenInt inOutStart, bitLenInt carryStart, bitLenInt length)
 
void MULModx (OCLAPI api_call, bitCapIntOcl toMod, bitCapIntOcl modN, bitLenInt inOutStart, bitLenInt carryStart, bitLenInt length)
 
void CMULx (OCLAPI api_call, bitCapIntOcl toMod, bitLenInt inOutStart, bitLenInt carryStart, bitLenInt length, const std::vector< bitLenInt > &controls)
 
void CMULModx (OCLAPI api_call, bitCapIntOcl toMod, bitCapIntOcl modN, bitLenInt inOutStart, bitLenInt carryStart, bitLenInt length, const std::vector< bitLenInt > &controls)
 
void FullAdx (bitLenInt inputBit1, bitLenInt inputBit2, bitLenInt carryInSumOut, bitLenInt carryOut, OCLAPI api_call)
 
void PhaseFlipX (OCLAPI api_call, const bitCapIntOcl *bciArgs)
 
bitCapIntOcl OpIndexed (OCLAPI api_call, bitCapIntOcl carryIn, bitLenInt indexStart, bitLenInt indexLength, bitLenInt valueStart, bitLenInt valueLength, bitLenInt carryIndex, const unsigned char *values)
 Add or Subtract based on an indexed load from classical memory. More...
 
void ClearBuffer (BufferPtr buff, bitCapIntOcl offset, bitCapIntOcl size)
 
virtual void Apply2x2 (bitCapIntOcl offset1, bitCapIntOcl offset2, complex const *mtrx, bitLenInt bitCount, bitCapIntOcl const *qPowersSorted, bool doCalcNorm, real1_f norm_thresh=REAL1_DEFAULT_ARG)=0
 
- Protected Member Functions inherited from Qrack::QEngine
bool IsPhase (complex const *mtrx)
 
bool IsInvert (complex const *mtrx)
 
bool IsIdentity (complex const *mtrx, bool isControlled)
 
void EitherMtrx (const std::vector< bitLenInt > &controls, complex const *mtrx, bitLenInt target, bool isAnti)
 
- Protected Member Functions inherited from Qrack::QInterface
complex GetNonunitaryPhase ()
 
template<typename Fn >
void MACWrapper (const std::vector< bitLenInt > &controls, Fn fn)
 
bitCapInt SampleClone (const std::vector< bitCapInt > &qPowers)
 

Protected Attributes

bool didInit
 
bool usingHostRam
 
bool unlockHostMem
 
cl_int callbackError
 
size_t nrmGroupCount
 
size_t nrmGroupSize
 
size_t totalOclAllocSize
 
int64_t deviceID
 
cl_map_flags lockSyncFlags
 
complex permutationAmp
 
std::shared_ptr< complexstateVec
 
std::mutex queue_mutex
 
cl::CommandQueue queue
 
cl::Context context
 
BufferPtr stateBuffer
 
BufferPtr nrmBuffer
 
DeviceContextPtr device_context
 
std::vector< EventVecPtrwait_refs
 
std::list< QueueItemwait_queue_items
 
std::vector< PoolItemPtrpoolItems
 
std::unique_ptr< real1[], void(*)(real1 *)> nrmArray
 
- Protected Attributes inherited from Qrack::QEngine
bool useHostRam
 
real1 runningNorm
 The value stored in runningNorm should always be the total probability implied by the norm of all amplitudes, summed, at each update. More...
 
bitCapIntOcl maxQPowerOcl
 
- Protected Attributes inherited from Qrack::QInterface
bool doNormalize
 
bool randGlobalPhase
 
bool useRDRAND
 
bitLenInt qubitCount
 
uint32_t randomSeed
 
real1 amplitudeFloor
 
bitCapInt maxQPower
 
qrack_rand_gen_ptr rand_generator
 
std::uniform_real_distribution< real1_srand_distribution
 
std::shared_ptr< RdRandomhardware_rand_generator
 

Additional Inherited Members

- Static Protected Member Functions inherited from Qrack::QInterface
static real1_f normHelper (complex c)
 
static real1_f clampProb (real1_f toClamp)
 

Detailed Description

OpenCL enhanced QEngineCPU implementation.

QEngineOCL exposes asynchronous void-return public methods, wherever possible. While QEngine public methods run on a secondary accelerator, such as a GPU, other code can be executed on the CPU at the same time. If only one (CPU) OpenCL device is available, this engine type is still compatible with most CPUs, and this implementation will still usually give a very significant performance boost over the non-OpenCL QEngineCPU implementation.

Each QEngineOCL queues an independent event list of chained asynchronous methods. Multiple QEngineOCL instances may share a single device. Any one QEngineOCL instance (or QEngineCPU instance) is NOT safe to access from multiple threads, but different QEngineOCL instances may be accessed in respective threads. When a public method with a non-void return type is called, (such as Prob() or M() variants,) the engine wait list of OpenCL events will first be finished, then the return value will be calculated based on all public method calls dispatched up to that point. Asynchronous method dispatch is "transparent," in the sense that no explicit consideration for synchronization should be necessary. The programmer benefits from knowing that void-return methods attempt asynchronous execution, but asynchronous methods are always joined, in order of dispatch, before any and all non-void-return methods give their results.

Constructor & Destructor Documentation

◆ QEngineOCL()

Qrack::QEngineOCL::QEngineOCL ( bitLenInt  qBitCount,
bitCapInt  initState,
qrack_rand_gen_ptr  rgp = nullptr,
complex  phaseFac = CMPLX_DEFAULT_ARG,
bool  doNorm = false,
bool  randomGlobalPhase = true,
bool  useHostMem = false,
int64_t  devID = -1,
bool  useHardwareRNG = true,
bool  ignored = false,
real1_f  norm_thresh = REAL1_EPSILON,
std::vector< int64_t >  ignored2 = {},
bitLenInt  ignored4 = 0U,
real1_f  ignored3 = FP_NORM_EPSILON_F 
)

Initialize a Qrack::QEngineOCL object.

Specify the number of qubits and an initial permutation state. Additionally, optionally specify a pointer to a random generator engine object, a device ID from the list of devices in the OCLEngine singleton, and a boolean that is set to "true" to initialize the state vector of the object to zero norm.

"devID" is the index of an OpenCL device in the OCLEngine singleton, to select the device to run this engine on. If "useHostMem" is set false, as by default, the QEngineOCL will attempt to allocate the state vector object only on device memory. If "useHostMem" is set true, general host RAM will be used for the state vector buffers. If the state vector is too large to allocate only on device memory, the QEngineOCL will attempt to fall back to allocating it in general host RAM.

Warning
"useHostMem" is not conscious of allocation by other QEngineOCL instances on the same device. Attempting to allocate too much device memory across too many QEngineOCL instances, for which each instance would have sufficient device resources on its own, will probably cause the program to crash (and may lead to general system instability). For safety, "useHostMem" can be turned on.

◆ ~QEngineOCL()

Qrack::QEngineOCL::~QEngineOCL ( )
inline

Member Function Documentation

◆ AddAlloc()

void Qrack::QEngineOCL::AddAlloc ( size_t  size)
inlineprotected

◆ AddQueueItem()

void Qrack::QEngineOCL::AddQueueItem ( const QueueItem item)
inline

◆ Allocate()

bitLenInt Qrack::QEngineOCL::Allocate ( bitLenInt  start,
bitLenInt  length 
)
virtual

Allocate new "length" count of |0> state qubits at specified qubit index start position.

Implements Qrack::QInterface.

◆ AllocStateVec()

std::shared_ptr< complex > Qrack::QEngineOCL::AllocStateVec ( bitCapInt  elemCount,
bool  doForceAlloc = false 
)
protected

◆ Apply2x2() [1/3]

virtual void Qrack::QEngine::Apply2x2
protected

◆ Apply2x2() [2/3]

void Qrack::QEngineOCL::Apply2x2 ( bitCapIntOcl  offset1,
bitCapIntOcl  offset2,
const complex mtrx,
bitLenInt  bitCount,
const bitCapIntOcl qPowersSorted,
bool  doCalcNorm,
real1_f  norm_thresh = REAL1_DEFAULT_ARG 
)
inlineprotectedvirtual

Implements Qrack::QEngine.

◆ Apply2x2() [3/3]

void Qrack::QEngineOCL::Apply2x2 ( bitCapIntOcl  offset1,
bitCapIntOcl  offset2,
const complex mtrx,
bitLenInt  bitCount,
const bitCapIntOcl qPowersSorted,
bool  doCalcNorm,
SPECIAL_2X2  special,
real1_f  norm_thresh = REAL1_DEFAULT_ARG 
)
protected

◆ ApplyM() [1/2]

void Qrack::QEngineOCL::ApplyM ( bitCapInt  mask,
bitCapInt  result,
complex  nrm 
)
protectedvirtual

Implements Qrack::QEngine.

◆ ApplyM() [2/2]

void Qrack::QEngineOCL::ApplyM ( bitCapInt  mask,
bool  result,
complex  nrm 
)
protectedvirtual

Reimplemented from Qrack::QEngine.

◆ ApplyMx()

void Qrack::QEngineOCL::ApplyMx ( OCLAPI  api_call,
const bitCapIntOcl bciArgs,
complex  nrm 
)
protected

◆ ArithmeticCall()

void Qrack::QEngineOCL::ArithmeticCall ( OCLAPI  api_call,
const bitCapIntOcl(&)  bciArgs[BCI_ARG_LEN],
const unsigned char *  values = NULL,
bitCapIntOcl  valuesLength = 0U 
)
protected

◆ BitMask()

void Qrack::QEngineOCL::BitMask ( bitCapIntOcl  mask,
OCLAPI  api_call,
real1_f  phase = (real1_f)PI_R1 
)
protected

◆ CArithmeticCall()

void Qrack::QEngineOCL::CArithmeticCall ( OCLAPI  api_call,
const bitCapIntOcl(&)  bciArgs[BCI_ARG_LEN],
bitCapIntOcl controlPowers,
bitLenInt  controlLen,
const unsigned char *  values = NULL,
bitCapIntOcl  valuesLength = 0U 
)
protected

◆ CDIV()

void Qrack::QEngineOCL::CDIV ( bitCapInt  toDiv,
bitLenInt  inOutStart,
bitLenInt  carryStart,
bitLenInt  length,
const std::vector< bitLenInt > &  controls 
)
virtual

Controlled division by integer.

Implements Qrack::QAlu.

◆ checkCallbackError()

void Qrack::QEngineOCL::checkCallbackError ( )
inlineprotected

◆ CIMULModNOut()

void Qrack::QEngineOCL::CIMULModNOut ( bitCapInt  toMul,
bitCapInt  modN,
bitLenInt  inStart,
bitLenInt  outStart,
bitLenInt  length,
const std::vector< bitLenInt > &  controls 
)
virtual

Inverse of controlled multiplication modulo N by integer, (out of place)

Reimplemented from Qrack::QEngine.

◆ CINC()

void Qrack::QEngineOCL::CINC ( bitCapInt  toAdd,
bitLenInt  start,
bitLenInt  length,
const std::vector< bitLenInt > &  controls 
)
virtual

Add integer (without sign, with controls)

Reimplemented from Qrack::QEngine.

◆ CINT()

void Qrack::QEngineOCL::CINT ( OCLAPI  api_call,
bitCapIntOcl  toMod,
bitLenInt  start,
bitLenInt  length,
const std::vector< bitLenInt > &  controls 
)
protected

Add or Subtract integer (without sign or carry, with controls)

◆ clDump()

void Qrack::QEngineOCL::clDump ( )
protected

Dumps the remaining asynchronous wait event list or queue of OpenCL events, for the current queue.

◆ ClearBuffer()

void Qrack::QEngineOCL::ClearBuffer ( BufferPtr  buff,
bitCapIntOcl  offset,
bitCapIntOcl  size 
)
protected

◆ clFinish()

void Qrack::QEngineOCL::clFinish ( bool  doHard = false)
protected

Finishes the asynchronous wait event list or queue of OpenCL events.

By default (doHard = false) only the wait event list of this engine is finished. If doHard = true, the entire device queue is finished, (which might be shared by other QEngineOCL instances).

◆ Clone()

QInterfacePtr Qrack::QEngineOCL::Clone ( )
virtual

Clone this QInterface.

Implements Qrack::QInterface.

◆ CloneEmpty()

QEnginePtr Qrack::QEngineOCL::CloneEmpty ( )
virtual

Clone this QEngine's settings, with a zeroed state vector.

Implements Qrack::QEngine.

◆ CMUL()

void Qrack::QEngineOCL::CMUL ( bitCapInt  toMul,
bitLenInt  inOutStart,
bitLenInt  carryStart,
bitLenInt  length,
const std::vector< bitLenInt > &  controls 
)
virtual

Controlled multiplication by integer.

Implements Qrack::QAlu.

◆ CMULModNOut()

void Qrack::QEngineOCL::CMULModNOut ( bitCapInt  toMul,
bitCapInt  modN,
bitLenInt  inStart,
bitLenInt  outStart,
bitLenInt  length,
const std::vector< bitLenInt > &  controls 
)
virtual

Controlled multiplication modulo N by integer, (out of place)

Reimplemented from Qrack::QEngine.

◆ CMULModx()

void Qrack::QEngineOCL::CMULModx ( OCLAPI  api_call,
bitCapIntOcl  toMod,
bitCapIntOcl  modN,
bitLenInt  inOutStart,
bitLenInt  carryStart,
bitLenInt  length,
const std::vector< bitLenInt > &  controls 
)
protected

◆ CMULx()

void Qrack::QEngineOCL::CMULx ( OCLAPI  api_call,
bitCapIntOcl  toMod,
bitLenInt  inOutStart,
bitLenInt  carryStart,
bitLenInt  length,
const std::vector< bitLenInt > &  controls 
)
protected

◆ Compose() [1/5]

void Qrack::QEngineOCL::Compose ( OCLAPI  apiCall,
const bitCapIntOcl bciArgs,
QEngineOCLPtr  toCopy 
)
protected

◆ Compose() [2/5]

bitLenInt Qrack::QEngineOCL::Compose ( QEngineOCLPtr  toCopy)

◆ Compose() [3/5]

bitLenInt Qrack::QEngineOCL::Compose ( QEngineOCLPtr  toCopy,
bitLenInt  start 
)

◆ Compose() [4/5]

bitLenInt Qrack::QEngineOCL::Compose ( QInterfacePtr  toCopy)
inlinevirtual

Combine another QInterface with this one, after the last bit index of this one.

"Compose" combines the quantum description of state of two independent QInterface objects into one object, containing the full permutation basis of the full object. The "inputState" bits are added after the last qubit index of the QInterface to which we "Compose." Informally, "Compose" is equivalent to "just setting another group of qubits down next to the first" without interacting them. Schroedinger's equation can form a description of state for two independent subsystems at once or "separable quantum subsystems" without interacting them. Once the description of state of the independent systems is combined, we can interact them, and we can describe their entanglements to each other, in which case they are no longer independent. A full entangled description of quantum state is not possible for two independent quantum subsystems until we "Compose" them.

"Compose" multiplies the probabilities of the indepedent permutation states of the two subsystems to find the probabilites of the entire set of combined permutations, by simple combinatorial reasoning. If the probablity of the "left-hand" subsystem being in |00> is 1/4, and the probablity of the "right-hand" subsystem being in |101> is 1/8, than the probability of the combined |00101> permutation state is 1/32, and so on for all permutations of the new combined state.

If the programmer doesn't want to "cheat" quantum mechanically, then the original copy of the state which is duplicated into the larger QInterface should be "thrown away" to satisfy "no clone theorem." This is not semantically enforced in Qrack, because optimization of an emulator might be acheived by "cloning" "under-the-hood" while only exposing a quantum mechanically consistent API or instruction set.

Returns the quantum bit offset that the QInterface was appended at, such that bit 5 in toCopy is equal to offset+5 in this object.

Reimplemented from Qrack::QInterface.

◆ Compose() [5/5]

bitLenInt Qrack::QEngineOCL::Compose ( QInterfacePtr  toCopy,
bitLenInt  start 
)
inlinevirtual

Reimplemented from Qrack::QInterface.

◆ CopyStateVec()

void Qrack::QEngineOCL::CopyStateVec ( QEnginePtr  src)
virtual

Exactly copy the state vector of a different QEngine instance.

Implements Qrack::QEngine.

◆ CPhaseFlipIfLess()

void Qrack::QEngineOCL::CPhaseFlipIfLess ( bitCapInt  greaterPerm,
bitLenInt  start,
bitLenInt  length,
bitLenInt  flagIndex 
)
virtual

The 6502 uses its carry flag also as a greater-than/less-than flag, for the CMP operation.

Implements Qrack::QAlu.

◆ CPOWModNOut()

void Qrack::QEngineOCL::CPOWModNOut ( bitCapInt  base,
bitCapInt  modN,
bitLenInt  inStart,
bitLenInt  outStart,
bitLenInt  length,
const std::vector< bitLenInt > &  controls 
)
virtual

Controlled multiplication modulo N by integer, (out of place)

Implements Qrack::QAlu.

◆ CtrlOrAntiProb()

real1_f Qrack::QEngineOCL::CtrlOrAntiProb ( bool  controlState,
bitLenInt  control,
bitLenInt  target 
)
virtual

Reimplemented from Qrack::QEngine.

◆ CUniformParityRZ()

void Qrack::QEngineOCL::CUniformParityRZ ( const std::vector< bitLenInt > &  controls,
bitCapInt  mask,
real1_f  angle 
)
virtual

If the controls are set and the target qubit set parity is odd, this applies a phase factor of \(e^{i angle}\).

If the controls are set and the target qubit set parity is even, this applies the conjugate, \(e^{-i angle}\). Otherwise, do nothing if any control is not set.

Implements Qrack::QParity.

◆ Decompose() [1/4]

virtual QInterfacePtr Qrack::QEngine::Decompose
inline

◆ Decompose() [2/4]

virtual QInterfacePtr Qrack::QInterface::Decompose

Schmidt decompose a length of qubits.

◆ Decompose() [3/4]

void Qrack::QEngineOCL::Decompose ( bitLenInt  start,
QInterfacePtr  dest 
)
virtual

Minimally decompose a set of contiguous bits from the separably composed unit, into "destination".

Minimally decompose a set of contigious bits from the separably composed unit. The length of this separable unit is reduced by the length of bits decomposed, and the bits removed are output in the destination QInterface pointer. The destination object must be initialized to the correct number of bits, in 0 permutation state. For quantum mechanical accuracy, the bit set removed and the bit set left behind should be quantum mechanically "separable."

Like how "Compose" is like "just setting another group of qubits down next to the first," if two sets of qubits are not entangled, then "Decompose" is like "just moving a few qubits away from the rest." Schroedinger's equation does not require bits to be explicitly interacted in order to describe their permutation basis, and the descriptions of state of separable subsystems, those which are not entangled with other subsystems, are just as easily removed from the description of state. (This is equivalent to a "Schmidt decomposition.")

If we have for example 5 qubits, and we wish to separate into "left" and "right" subsystems of 3 and 2 qubits, we sum probabilities of one permutation of the "left" three over ALL permutations of the "right" two, for all permutations, and vice versa, like so:

\( P(|1000>|xy>) = P(|1000 00>) + P(|1000 10>) + P(|1000 01>) + P(|1000 11>). \)

If the subsystems are not "separable," i.e. if they are entangled, this operation is not well-motivated, and its output is not necessarily defined. (The summing of probabilities over permutations of subsytems will be performed as described above, but this is not quantum mechanically meaningful.) To ensure that the subsystem is "separable," i.e. that it has no entanglements to other subsystems in the QInterface, it can be measured with M(), or else all qubits other than the subsystem can be measured.

Implements Qrack::QInterface.

◆ Decompose() [4/4]

virtual void Qrack::QInterface::Decompose

Minimally decompose a set of contiguous bits from the separably composed unit, into "destination".

Minimally decompose a set of contigious bits from the separably composed unit. The length of this separable unit is reduced by the length of bits decomposed, and the bits removed are output in the destination QInterface pointer. The destination object must be initialized to the correct number of bits, in 0 permutation state. For quantum mechanical accuracy, the bit set removed and the bit set left behind should be quantum mechanically "separable."

Like how "Compose" is like "just setting another group of qubits down next to the first," if two sets of qubits are not entangled, then "Decompose" is like "just moving a few qubits away from the rest." Schroedinger's equation does not require bits to be explicitly interacted in order to describe their permutation basis, and the descriptions of state of separable subsystems, those which are not entangled with other subsystems, are just as easily removed from the description of state. (This is equivalent to a "Schmidt decomposition.")

If we have for example 5 qubits, and we wish to separate into "left" and "right" subsystems of 3 and 2 qubits, we sum probabilities of one permutation of the "left" three over ALL permutations of the "right" two, for all permutations, and vice versa, like so:

\( P(|1000>|xy>) = P(|1000 00>) + P(|1000 10>) + P(|1000 01>) + P(|1000 11>). \)

If the subsystems are not "separable," i.e. if they are entangled, this operation is not well-motivated, and its output is not necessarily defined. (The summing of probabilities over permutations of subsytems will be performed as described above, but this is not quantum mechanically meaningful.) To ensure that the subsystem is "separable," i.e. that it has no entanglements to other subsystems in the QInterface, it can be measured with M(), or else all qubits other than the subsystem can be measured.

◆ DecomposeDispose()

void Qrack::QEngineOCL::DecomposeDispose ( bitLenInt  start,
bitLenInt  length,
QEngineOCLPtr  dest 
)
protected

◆ DispatchQueue()

void Qrack::QEngineOCL::DispatchQueue ( )

◆ Dispose() [1/2]

void Qrack::QEngineOCL::Dispose ( bitLenInt  start,
bitLenInt  length 
)
virtual

Minimally decompose a set of contiguous bits from the separably composed unit, and discard the separable bits from index "start" for "length.".

Minimally decompose a set of contigious bits from the separably composed unit. The length of this separable unit is reduced by the length of bits decomposed, and the bits removed are output in the destination QInterface pointer. The destination object must be initialized to the correct number of bits, in 0 permutation state. For quantum mechanical accuracy, the bit set removed and the bit set left behind should be quantum mechanically "separable."

Like how "Compose" is like "just setting another group of qubits down next to the first," if two sets of qubits are not entangled, then "Decompose" is like "just moving a few qubits away from the rest." Schroedinger's equation does not require bits to be explicitly interacted in order to describe their permutation basis, and the descriptions of state of separable subsystems, those which are not entangled with other subsystems, are just as easily removed from the description of state. (This is equivalent to a "Schmidt decomposition.")

If we have for example 5 qubits, and we wish to separate into "left" and "right" subsystems of 3 and 2 qubits, we sum probabilities of one permutation of the "left" three over ALL permutations of the "right" two, for all permutations, and vice versa, like so:

\( P(|1000>|xy>) = P(|1000 00>) + P(|1000 10>) + P(|1000 01>) + P(|1000 11>). \)

If the subsystems are not "separable," i.e. if they are entangled, this operation is not well-motivated, and its output is not necessarily defined. (The summing of probabilities over permutations of subsytems will be performed as described above, but this is not quantum mechanically meaningful.) To ensure that the subsystem is "separable," i.e. that it has no entanglements to other subsystems in the QInterface, it can be measured with M(), or else all qubits other than the subsystem can be measured.

Implements Qrack::QInterface.

◆ Dispose() [2/2]

void Qrack::QEngineOCL::Dispose ( bitLenInt  start,
bitLenInt  length,
bitCapInt  disposedPerm 
)
virtual

Dispose a a contiguous set of qubits that are already in a permutation eigenstate.

Implements Qrack::QInterface.

◆ DIV()

void Qrack::QEngineOCL::DIV ( bitCapInt  toDiv,
bitLenInt  inOutStart,
bitLenInt  carryStart,
bitLenInt  length 
)
virtual

Divide by integer.

Implements Qrack::QAlu.

◆ ExpectationBitsAll()

real1_f Qrack::QEngineOCL::ExpectationBitsAll ( const std::vector< bitLenInt > &  bits,
bitCapInt  offset = 0 
)
virtual

Get permutation expectation value of bits.

The permutation expectation value of all included bits is returned, with bits valued from low to high as the order of the "bits" array parameter argument.

Warning
PSEUDO-QUANTUM

Reimplemented from Qrack::QInterface.

◆ Finish()

void Qrack::QEngineOCL::Finish ( )
inlinevirtual

If asynchronous work is still running, block until it finishes.

Note that this is never necessary to get correct, timely return values. QEngines and other layers will always internally "Finish" when necessary for correct return values. This is primarily for debugging and benchmarking.

Reimplemented from Qrack::QInterface.

◆ FirstNonzeroPhase()

real1_f Qrack::QEngineOCL::FirstNonzeroPhase ( )
inlinevirtual

Get phase of lowest permutation nonzero amplitude.

Reimplemented from Qrack::QInterface.

◆ FixGroupSize()

size_t Qrack::QEngineOCL::FixGroupSize ( size_t  wic,
size_t  gs 
)
inlineprotected

◆ FixWorkItemCount()

size_t Qrack::QEngineOCL::FixWorkItemCount ( size_t  maxI,
size_t  wic 
)
inlineprotected

◆ ForceMParity()

bool Qrack::QEngineOCL::ForceMParity ( bitCapInt  mask,
bool  result,
bool  doForce = true 
)
virtual

Act as if is a measurement of parity of the masked set of qubits was applied, except force the (usually random) result.

Warning
PSEUDO-QUANTUM

Implements Qrack::QParity.

◆ FreeAll()

void Qrack::QEngineOCL::FreeAll ( )

◆ FreeStateVec()

void Qrack::QEngineOCL::FreeStateVec ( )
inlineprotected

◆ FullAdd()

void Qrack::QEngineOCL::FullAdd ( bitLenInt  inputBit1,
bitLenInt  inputBit2,
bitLenInt  carryInSumOut,
bitLenInt  carryOut 
)
virtual

Quantum analog of classical "Full Adder" gate.

Reimplemented from Qrack::QInterface.

◆ FullAdx()

void Qrack::QEngineOCL::FullAdx ( bitLenInt  inputBit1,
bitLenInt  inputBit2,
bitLenInt  carryInSumOut,
bitLenInt  carryOut,
OCLAPI  api_call 
)
protected

◆ GetAmplitude()

complex Qrack::QEngineOCL::GetAmplitude ( bitCapInt  perm)
virtual

Get the representational amplitude of a full permutation.

Warning
PSEUDO-QUANTUM

Implements Qrack::QInterface.

◆ GetAmplitudePage()

void Qrack::QEngineOCL::GetAmplitudePage ( complex pagePtr,
bitCapIntOcl  offset,
bitCapIntOcl  length 
)
virtual

Copy a "page" of amplitudes from this QEngine's internal state, into pagePtr.

Implements Qrack::QEngine.

◆ GetDevice()

int64_t Qrack::QEngineOCL::GetDevice ( )
inlinevirtual

Get GPU device ID.

Reimplemented from Qrack::QEngine.

◆ GetExpectation()

real1_f Qrack::QEngineOCL::GetExpectation ( bitLenInt  valueStart,
bitLenInt  valueLength 
)
protectedvirtual

Implements Qrack::QEngine.

◆ GetFreePoolItem()

PoolItemPtr Qrack::QEngineOCL::GetFreePoolItem ( )
protected

◆ GetMaxSize()

bitCapIntOcl Qrack::QEngineOCL::GetMaxSize ( )
inline

◆ GetProbs()

void Qrack::QEngineOCL::GetProbs ( real1 outputProbs)
virtual

Get all probabilities, in unsigned int permutation basis.

Implements Qrack::QInterface.

◆ GetQuantumState()

void Qrack::QEngineOCL::GetQuantumState ( complex outputState)
virtual

Get pure quantum state, in unsigned int permutation basis.

Implements Qrack::QInterface.

◆ Hash()

void Qrack::QEngineOCL::Hash ( bitLenInt  start,
bitLenInt  length,
const unsigned char *  values 
)
virtual

Set 8 bit register bits based on read from classical memory.

Implements Qrack::QAlu.

◆ IFullAdd()

void Qrack::QEngineOCL::IFullAdd ( bitLenInt  inputBit1,
bitLenInt  inputBit2,
bitLenInt  carryInSumOut,
bitLenInt  carryOut 
)
virtual

Inverse of FullAdd.

Reimplemented from Qrack::QInterface.

◆ IMULModNOut()

void Qrack::QEngineOCL::IMULModNOut ( bitCapInt  toMul,
bitCapInt  modN,
bitLenInt  inStart,
bitLenInt  outStart,
bitLenInt  length 
)
virtual

Inverse of multiplication modulo N by integer, (out of place)

Reimplemented from Qrack::QEngine.

◆ INC()

void Qrack::QEngineOCL::INC ( bitCapInt  toAdd,
bitLenInt  start,
bitLenInt  length 
)
virtual

Increment integer (without sign, with carry)

Reimplemented from Qrack::QEngine.

◆ INCBCD()

void Qrack::QEngineOCL::INCBCD ( bitCapInt  toAdd,
bitLenInt  start,
bitLenInt  length 
)
virtual

Increment integer (BCD)

Implements Qrack::QAlu.

◆ INCDECBCDC()

void Qrack::QEngineOCL::INCDECBCDC ( bitCapInt  toMod,
bitLenInt  inOutStart,
bitLenInt  length,
bitLenInt  carryIndex 
)
protectedvirtual

Increment integer (BCD, with carry)

Implements Qrack::QAlu.

◆ INCDECC()

void Qrack::QEngineOCL::INCDECC ( bitCapInt  toMod,
bitLenInt  inOutStart,
bitLenInt  length,
bitLenInt  carryIndex 
)
protectedvirtual

Common driver method behing INCC and DECC.

Reimplemented from Qrack::QEngine.

◆ INCDECSC() [1/2]

void Qrack::QEngineOCL::INCDECSC ( bitCapInt  toMod,
bitLenInt  inOutStart,
bitLenInt  length,
bitLenInt  carryIndex 
)
protectedvirtual

Increment integer (with sign, with carry)

Implements Qrack::QAlu.

◆ INCDECSC() [2/2]

void Qrack::QEngineOCL::INCDECSC ( bitCapInt  toMod,
bitLenInt  inOutStart,
bitLenInt  length,
bitLenInt  overflowIndex,
bitLenInt  carryIndex 
)
protectedvirtual

Increment integer (with sign, with carry)

Implements Qrack::QAlu.

◆ INCS()

void Qrack::QEngineOCL::INCS ( bitCapInt  toAdd,
bitLenInt  start,
bitLenInt  length,
bitLenInt  carryIndex 
)
virtual

Increment integer (without sign, with carry)

Reimplemented from Qrack::QEngine.

◆ IndexedADC()

bitCapInt Qrack::QEngineOCL::IndexedADC ( bitLenInt  indexStart,
bitLenInt  indexLength,
bitLenInt  valueStart,
bitLenInt  valueLength,
bitLenInt  carryIndex,
const unsigned char *  values 
)
virtual

Add based on an indexed load from classical memory.

Implements Qrack::QAlu.

◆ IndexedLDA()

bitCapInt Qrack::QEngineOCL::IndexedLDA ( bitLenInt  indexStart,
bitLenInt  indexLength,
bitLenInt  valueStart,
bitLenInt  valueLength,
const unsigned char *  values,
bool  resetValue = true 
)
virtual

Set 8 bit register bits based on read from classical memory.

Implements Qrack::QAlu.

◆ IndexedSBC()

bitCapInt Qrack::QEngineOCL::IndexedSBC ( bitLenInt  indexStart,
bitLenInt  indexLength,
bitLenInt  valueStart,
bitLenInt  valueLength,
bitLenInt  carryIndex,
const unsigned char *  values 
)
virtual

Subtract based on an indexed load from classical memory.

Implements Qrack::QAlu.

◆ InitOCL()

void Qrack::QEngineOCL::InitOCL ( int64_t  devID)
protected

◆ INT()

void Qrack::QEngineOCL::INT ( OCLAPI  api_call,
bitCapIntOcl  toMod,
bitLenInt  inOutStart,
bitLenInt  length 
)
protected

Add or Subtract integer (without sign or carry)

◆ INTBCD()

void Qrack::QEngineOCL::INTBCD ( OCLAPI  api_call,
bitCapIntOcl  toMod,
bitLenInt  inOutStart,
bitLenInt  length 
)
protected

Add or Subtract integer (BCD)

◆ INTBCDC()

void Qrack::QEngineOCL::INTBCDC ( OCLAPI  api_call,
bitCapIntOcl  toMod,
bitLenInt  inOutStart,
bitLenInt  length,
bitLenInt  carryIndex 
)
protected

Add or Subtract integer (BCD, with carry)

◆ INTC()

void Qrack::QEngineOCL::INTC ( OCLAPI  api_call,
bitCapIntOcl  toMod,
bitLenInt  inOutStart,
bitLenInt  length,
bitLenInt  carryIndex 
)
protected

Add or Subtract integer (without sign, with carry)

◆ INTS()

void Qrack::QEngineOCL::INTS ( OCLAPI  api_call,
bitCapIntOcl  toMod,
bitLenInt  inOutStart,
bitLenInt  length,
bitLenInt  overflowIndex 
)
protected

Add or Subtract integer (with overflow, without carry)

◆ INTSC() [1/2]

void Qrack::QEngineOCL::INTSC ( OCLAPI  api_call,
bitCapIntOcl  toMod,
bitLenInt  inOutStart,
bitLenInt  length,
bitLenInt  carryIndex 
)
protected

Add or Subtract integer (with sign, with carry)

◆ INTSC() [2/2]

void Qrack::QEngineOCL::INTSC ( OCLAPI  api_call,
bitCapIntOcl  toMod,
bitLenInt  inOutStart,
bitLenInt  length,
bitLenInt  overflowIndex,
bitLenInt  carryIndex 
)
protected

Add or Subtract integer (with sign, with carry)

◆ Invert()

void Qrack::QEngineOCL::Invert ( complex  topRight,
complex  bottomLeft,
bitLenInt  qubitIndex 
)
virtual

Apply a single bit transformation that reverses bit probability and might effect phase.

Reimplemented from Qrack::QInterface.

◆ isFinished()

bool Qrack::QEngineOCL::isFinished ( )
inlinevirtual

Returns "false" if asynchronous work is still running, and "true" if all previously dispatched asynchronous work is done.

Reimplemented from Qrack::QInterface.

◆ isOpenCL()

virtual bool Qrack::QEngineOCL::isOpenCL ( )
inlinevirtual

Returns "true" if current simulation is OpenCL-based.

Reimplemented from Qrack::QInterface.

◆ IsZeroAmplitude()

bool Qrack::QEngineOCL::IsZeroAmplitude ( )
inlinevirtual

Returns "true" only if amplitudes are all totally 0.

Implements Qrack::QEngine.

◆ LockSync()

void Qrack::QEngineOCL::LockSync ( cl_map_flags  flags = (CL_MAP_READ | CL_MAP_WRITE))
protected

Locks synchronization between the state vector buffer and general RAM, so the state vector can be directly read and/or written to.

OpenCL buffers, even when allocated on "host" general RAM, are not safe to read from or write to unless "mapped." When mapped, a buffer cannot be used by OpenCL kernels. If the state vector needs to be directly manipulated, it needs to be temporarily mapped, and this can be accomplished with LockSync(). When direct reading from or writing to the state vector is done, before performing other OpenCL operations on it, it must be unmapped with UnlockSync().

◆ MakeBuffer()

BufferPtr Qrack::QEngineOCL::MakeBuffer ( cl_mem_flags  flags,
size_t  size,
void *  host_ptr = NULL 
)
inlineprotected

◆ MakeStateVecBuffer()

BufferPtr Qrack::QEngineOCL::MakeStateVecBuffer ( std::shared_ptr< complex nStateVec)
protected

◆ MAll()

bitCapInt Qrack::QEngineOCL::MAll ( )
virtual

Measure permutation state of all coherent bits.

Reimplemented from Qrack::QInterface.

◆ MUL()

void Qrack::QEngineOCL::MUL ( bitCapInt  toMul,
bitLenInt  inOutStart,
bitLenInt  carryStart,
bitLenInt  length 
)
virtual

Multiply by integer.

Implements Qrack::QAlu.

◆ MULModNOut()

void Qrack::QEngineOCL::MULModNOut ( bitCapInt  toMul,
bitCapInt  modN,
bitLenInt  inStart,
bitLenInt  outStart,
bitLenInt  length 
)
virtual

Multiplication modulo N by integer, (out of place)

Reimplemented from Qrack::QEngine.

◆ MULModx()

void Qrack::QEngineOCL::MULModx ( OCLAPI  api_call,
bitCapIntOcl  toMod,
bitCapIntOcl  modN,
bitLenInt  inOutStart,
bitLenInt  carryStart,
bitLenInt  length 
)
protected

◆ MULx()

void Qrack::QEngineOCL::MULx ( OCLAPI  api_call,
bitCapIntOcl  toMod,
bitLenInt  inOutStart,
bitLenInt  carryStart,
bitLenInt  length 
)
protected

◆ NormalizeState()

void Qrack::QEngineOCL::NormalizeState ( real1_f  nrm = REAL1_DEFAULT_ARG,
real1_f  norm_thresh = REAL1_DEFAULT_ARG,
real1_f  phaseArg = ZERO_R1_F 
)
virtual

Apply the normalization factor found by UpdateRunningNorm() or on the fly by a single bit gate.

(On an actual quantum computer, the state should never require manual normalization.)

Warning
PSEUDO-QUANTUM

Implements Qrack::QInterface.

◆ OpIndexed()

bitCapIntOcl Qrack::QEngineOCL::OpIndexed ( OCLAPI  api_call,
bitCapIntOcl  carryIn,
bitLenInt  indexStart,
bitLenInt  indexLength,
bitLenInt  valueStart,
bitLenInt  valueLength,
bitLenInt  carryIndex,
const unsigned char *  values 
)
protected

Add or Subtract based on an indexed load from classical memory.

◆ ParSum()

real1_f Qrack::QEngineOCL::ParSum ( real1 toSum,
bitCapIntOcl  maxI 
)
protected

◆ Phase()

void Qrack::QEngineOCL::Phase ( complex  topLeft,
complex  bottomRight,
bitLenInt  qubitIndex 
)
virtual

Apply a single bit transformation that only effects phase.

Reimplemented from Qrack::QInterface.

◆ PhaseFlipIfLess()

void Qrack::QEngineOCL::PhaseFlipIfLess ( bitCapInt  greaterPerm,
bitLenInt  start,
bitLenInt  length 
)
virtual

This is an expedient for an adaptive Grover's search for a function's global minimum.

Implements Qrack::QAlu.

◆ PhaseFlipX()

void Qrack::QEngineOCL::PhaseFlipX ( OCLAPI  api_call,
const bitCapIntOcl bciArgs 
)
protected

◆ PhaseParity()

void Qrack::QEngineOCL::PhaseParity ( real1_f  radians,
bitCapInt  mask 
)
virtual

Parity phase gate.

Applies e^(i*angle) phase factor to all combinations of bits with odd parity, based upon permutations of qubits.

Reimplemented from Qrack::QInterface.

◆ PopQueue()

void Qrack::QEngineOCL::PopQueue ( bool  isDispatch)

◆ POWModNOut()

void Qrack::QEngineOCL::POWModNOut ( bitCapInt  base,
bitCapInt  modN,
bitLenInt  inStart,
bitLenInt  outStart,
bitLenInt  length 
)
virtual

Raise a classical base to a quantum power, modulo N, (out of place)

Implements Qrack::QAlu.

◆ Prob()

real1_f Qrack::QEngineOCL::Prob ( bitLenInt  qubit)
virtual

PSEUDO-QUANTUM Direct measure of bit probability to be in |1> state.

Implements Qrack::QInterface.

◆ ProbMask()

real1_f Qrack::QEngineOCL::ProbMask ( bitCapInt  mask,
bitCapInt  permutation 
)
virtual

Direct measure of masked permutation probability.

Returns probability of permutation of the mask.

"mask" masks the bits to check the probability of. "permutation" sets the 0 or 1 value for each bit in the mask. Bits which are set in the mask can be set to 0 or 1 in the permutation, while reset bits in the mask should be 0 in the permutation.

Warning
PSEUDO-QUANTUM

Implements Qrack::QEngine.

◆ ProbMaskAll()

void Qrack::QEngineOCL::ProbMaskAll ( bitCapInt  mask,
real1 probsArray 
)
virtual

Direct measure of masked permutation probability.

"mask" masks the bits to check the probability of. The probabilities of all permutations of the masked bits, from left/low to right/high are returned in the "probsArray" argument.

Warning
PSEUDO-QUANTUM

Reimplemented from Qrack::QInterface.

◆ ProbParity()

real1_f Qrack::QEngineOCL::ProbParity ( bitCapInt  mask)
virtual

Overall probability of any odd permutation of the masked set of bits.

Implements Qrack::QParity.

◆ ProbReg()

real1_f Qrack::QEngineOCL::ProbReg ( bitLenInt  start,
bitLenInt  length,
bitCapInt  permutation 
)
virtual

Direct measure of register permutation probability.

Returns probability of permutation of the register.

Warning
PSEUDO-QUANTUM

Implements Qrack::QEngine.

◆ ProbRegAll()

void Qrack::QEngineOCL::ProbRegAll ( bitLenInt  start,
bitLenInt  length,
real1 probsArray 
)
virtual

Reimplemented from Qrack::QEngine.

◆ Probx()

real1_f Qrack::QEngineOCL::Probx ( OCLAPI  api_call,
const bitCapIntOcl bciArgs 
)
protected

◆ QueueCall()

void Qrack::QEngineOCL::QueueCall ( OCLAPI  api_call,
size_t  workItemCount,
size_t  localGroupSize,
std::vector< BufferPtr args,
size_t  localBuffSize = 0U,
size_t  deallocSize = 0U 
)
inline

◆ QueueSetDoNormalize()

void Qrack::QEngineOCL::QueueSetDoNormalize ( bool  doNorm)
inlinevirtual

Add an operation to the (OpenCL) queue, to set the value of doNormalize, which controls whether to automatically normalize the state.

Implements Qrack::QEngine.

◆ QueueSetRunningNorm()

void Qrack::QEngineOCL::QueueSetRunningNorm ( real1_f  runningNrm)
inlinevirtual

Add an operation to the (OpenCL) queue, to set the value of runningNorm, which is the normalization constant for the next normalization operation.

Implements Qrack::QEngine.

◆ ReinitBuffer()

void Qrack::QEngineOCL::ReinitBuffer ( )
protected

◆ ResetStateBuffer()

void Qrack::QEngineOCL::ResetStateBuffer ( BufferPtr  nStateBuffer)
protected

◆ ResetWaitEvents()

EventVecPtr Qrack::QEngineOCL::ResetWaitEvents ( bool  waitQueue = true)
protected

◆ ROL()

void Qrack::QEngineOCL::ROL ( bitLenInt  shift,
bitLenInt  start,
bitLenInt  length 
)
virtual

"Circular shift left" - shift bits left, and carry last bits.

Reimplemented from Qrack::QInterface.

◆ ROx()

void Qrack::QEngineOCL::ROx ( OCLAPI  api_call,
bitLenInt  shift,
bitLenInt  start,
bitLenInt  length 
)
protected

◆ SetAmplitude()

void Qrack::QEngineOCL::SetAmplitude ( bitCapInt  perm,
complex  amp 
)
virtual

Sets the representational amplitude of a full permutation.

Warning
PSEUDO-QUANTUM

Implements Qrack::QInterface.

◆ SetAmplitudePage() [1/2]

void Qrack::QEngineOCL::SetAmplitudePage ( const complex pagePtr,
bitCapIntOcl  offset,
bitCapIntOcl  length 
)
virtual

Copy a "page" of amplitudes from pagePtr into this QEngine's internal state.

Implements Qrack::QEngine.

◆ SetAmplitudePage() [2/2]

void Qrack::QEngineOCL::SetAmplitudePage ( QEnginePtr  pageEnginePtr,
bitCapIntOcl  srcOffset,
bitCapIntOcl  dstOffset,
bitCapIntOcl  length 
)
virtual

Copy a "page" of amplitudes from another QEngine, pointed to by pageEnginePtr, into this QEngine's internal state.

Implements Qrack::QEngine.

◆ SetDevice()

void Qrack::QEngineOCL::SetDevice ( int64_t  dID)
virtual

Set GPU device ID.

Reimplemented from Qrack::QEngine.

◆ SetPermutation()

void Qrack::QEngineOCL::SetPermutation ( bitCapInt  perm,
complex  phaseFac = CMPLX_DEFAULT_ARG 
)
virtual

Set to a specific permutation of all qubits.

Reimplemented from Qrack::QInterface.

◆ SetQuantumState()

void Qrack::QEngineOCL::SetQuantumState ( const complex inputState)
virtual

Set arbitrary pure quantum state, in unsigned int permutation basis.

Implements Qrack::QInterface.

◆ ShuffleBuffers()

void Qrack::QEngineOCL::ShuffleBuffers ( QEnginePtr  engine)
virtual

Swap the high half of this engine with the low half of another.

This is necessary for gates which cross sub-engine boundaries.

Implements Qrack::QEngine.

◆ SubtractAlloc()

void Qrack::QEngineOCL::SubtractAlloc ( size_t  size)
inlineprotected

◆ SumSqrDiff() [1/2]

real1_f Qrack::QEngineOCL::SumSqrDiff ( QEngineOCLPtr  toCompare)

◆ SumSqrDiff() [2/2]

real1_f Qrack::QEngineOCL::SumSqrDiff ( QInterfacePtr  toCompare)
inlinevirtual

Implements Qrack::QInterface.

◆ SwitchHostPtr()

void Qrack::QEngineOCL::SwitchHostPtr ( bool  useHostMem)
inlinevirtual

Switch to/from host/device state vector bufffer.

Reimplemented from Qrack::QEngine.

◆ tryOcl()

void Qrack::QEngineOCL::tryOcl ( std::string  message,
std::function< int()>  oclCall 
)
inlineprotected

◆ UniformlyControlledSingleBit()

void Qrack::QEngineOCL::UniformlyControlledSingleBit ( const std::vector< bitLenInt > &  controls,
bitLenInt  qubitIndex,
const complex mtrxs,
const std::vector< bitCapInt > &  mtrxSkipPowers,
bitCapInt  mtrxSkipValueMask 
)
virtual

Reimplemented from Qrack::QInterface.

◆ UniformParityRZ()

void Qrack::QEngineOCL::UniformParityRZ ( bitCapInt  mask,
real1_f  angle 
)
virtual

If the target qubit set parity is odd, this applies a phase factor of \(e^{i angle}\).

If the target qubit set parity is even, this applies the conjugate, e^{-i angle}.

Reimplemented from Qrack::QParity.

◆ UnlockSync()

void Qrack::QEngineOCL::UnlockSync ( )
protected

Unlocks synchronization between the state vector buffer and general RAM, so the state vector can be operated on with OpenCL kernels and operations.

OpenCL buffers, even when allocated on "host" general RAM, are not safe to read from or write to unless "mapped." When mapped, a buffer cannot be used by OpenCL kernels. If the state vector needs to be directly manipulated, it needs to be temporarily mapped, and this can be accomplished with LockSync(). When direct reading from or writing to the state vector is done, before performing other OpenCL operations on it, it must be unmapped with UnlockSync().

◆ UpdateRunningNorm()

void Qrack::QEngineOCL::UpdateRunningNorm ( real1_f  norm_thresh = REAL1_DEFAULT_ARG)
virtual

Force a calculation of the norm of the state vector, in order to make it unit length before the next probability or measurement operation.

(On an actual quantum computer, the state should never require manual normalization.)

Warning
PSEUDO-QUANTUM

Implements Qrack::QInterface.

◆ WaitCall()

void Qrack::QEngineOCL::WaitCall ( OCLAPI  api_call,
size_t  workItemCount,
size_t  localGroupSize,
std::vector< BufferPtr args,
size_t  localBuffSize = 0U 
)
protected

◆ X() [1/4]

virtual void Qrack::QEngine::X
inline

◆ X() [2/4]

virtual void Qrack::QInterface::X
inline

X gate.

Applies the Pauli "X" operator to the qubit at "qubitIndex." The Pauli "X" operator is equivalent to a logical "NOT."

◆ X() [3/4]

virtual void Qrack::QInterface::X
inline

Bitwise Pauli X (or logical "NOT") operator.

◆ X() [4/4]

void Qrack::QEngineOCL::X ( bitLenInt  target)
virtual

NOT gate, which is also Pauli x matrix.

Reimplemented from Qrack::QEngine.

◆ XMask()

void Qrack::QEngineOCL::XMask ( bitCapInt  mask)
virtual

Masked X gate.

Applies the Pauli "X" operator to all qubits in the mask. A qubit index "n" is in the mask if (((1 << n) & mask)

0). The Pauli "X" operator is equivalent to a logical "NOT."

Reimplemented from Qrack::QInterface.

◆ xMULx()

void Qrack::QEngineOCL::xMULx ( OCLAPI  api_call,
const bitCapIntOcl bciArgs,
BufferPtr  controlBuffer 
)
protected

◆ Z()

void Qrack::QEngineOCL::Z ( bitLenInt  target)
virtual

Apply Pauli Z matrix to bit.

Reimplemented from Qrack::QInterface.

◆ ZeroAmplitudes()

void Qrack::QEngineOCL::ZeroAmplitudes ( )
virtual

Set all amplitudes to 0, and optionally temporarily deallocate state vector RAM.

Implements Qrack::QEngine.

Member Data Documentation

◆ callbackError

cl_int Qrack::QEngineOCL::callbackError
protected

◆ context

cl::Context Qrack::QEngineOCL::context
protected

◆ device_context

DeviceContextPtr Qrack::QEngineOCL::device_context
protected

◆ deviceID

int64_t Qrack::QEngineOCL::deviceID
protected

◆ didInit

bool Qrack::QEngineOCL::didInit
protected

◆ lockSyncFlags

cl_map_flags Qrack::QEngineOCL::lockSyncFlags
protected

◆ nrmArray

std::unique_ptr<real1[], void (*)(real1*)> Qrack::QEngineOCL::nrmArray
protected

◆ nrmBuffer

BufferPtr Qrack::QEngineOCL::nrmBuffer
protected

◆ nrmGroupCount

size_t Qrack::QEngineOCL::nrmGroupCount
protected

◆ nrmGroupSize

size_t Qrack::QEngineOCL::nrmGroupSize
protected

◆ OclMemDenom

const bitCapIntOcl Qrack::QEngineOCL::OclMemDenom = 3U
static

1 / OclMemDenom is the maximum fraction of total OCL device RAM that a single state vector should occupy, by design of the QEngine.

◆ permutationAmp

complex Qrack::QEngineOCL::permutationAmp
protected

◆ poolItems

std::vector<PoolItemPtr> Qrack::QEngineOCL::poolItems
protected

◆ queue

cl::CommandQueue Qrack::QEngineOCL::queue
protected

◆ queue_mutex

std::mutex Qrack::QEngineOCL::queue_mutex
protected

◆ stateBuffer

BufferPtr Qrack::QEngineOCL::stateBuffer
protected

◆ stateVec

std::shared_ptr<complex> Qrack::QEngineOCL::stateVec
protected

◆ totalOclAllocSize

size_t Qrack::QEngineOCL::totalOclAllocSize
protected

◆ unlockHostMem

bool Qrack::QEngineOCL::unlockHostMem
protected

◆ usingHostRam

bool Qrack::QEngineOCL::usingHostRam
protected

◆ wait_queue_items

std::list<QueueItem> Qrack::QEngineOCL::wait_queue_items
protected

◆ wait_refs

std::vector<EventVecPtr> Qrack::QEngineOCL::wait_refs
protected

The documentation for this class was generated from the following files: