Qrack  9.9
General classical-emulating-quantum development framework
Public Member Functions | Protected Types | Protected Member Functions | Protected Attributes | List of all members
Qrack::QEngineCPU Class Reference

General purpose QEngineCPU implementation. More...

#include <qengine_cpu.hpp>

Inheritance diagram for Qrack::QEngineCPU:
Inheritance graph
[legend]
Collaboration diagram for Qrack::QEngineCPU:
Collaboration graph
[legend]

Public Member Functions

 QEngineCPU (bitLenInt qBitCount, const bitCapInt &initState, qrack_rand_gen_ptr rgp=nullptr, const complex &phaseFac=CMPLX_DEFAULT_ARG, bool doNorm=false, bool randomGlobalPhase=true, bool ignored=false, int64_t ignored2=-1, bool useHardwareRNG=true, bool useSparseStateVec=false, real1_f norm_thresh=REAL1_EPSILON, std::vector< int64_t > ignored3={}, bitLenInt ignored4=0U, real1_f ignored5=_qrack_qunit_sep_thresh)
 Initialize a coherent unit with qBitCount number of bits, to initState unsigned integer permutation state, with a shared random number generator, with a specific phase. More...
 
 ~QEngineCPU ()
 
void Finish ()
 If asynchronous work is still running, block until it finishes. More...
 
bool isFinished ()
 Returns "false" if asynchronous work is still running, and "true" if all previously dispatched asynchronous work is done. More...
 
void Dump ()
 If asynchronous work is still running, let the simulator know that it can be aborted. More...
 
void SetDevice (int64_t dID)
 Set GPU device ID. More...
 
real1_f FirstNonzeroPhase ()
 Get phase of lowest permutation nonzero amplitude. More...
 
void ZeroAmplitudes ()
 Set all amplitudes to 0, and optionally temporarily deallocate state vector RAM. More...
 
void FreeStateVec (complex *sv=NULL)
 
bool IsZeroAmplitude ()
 Returns "true" only if amplitudes are all totally 0. More...
 
void GetAmplitudePage (complex *pagePtr, bitCapIntOcl offset, bitCapIntOcl length)
 Copy a "page" of amplitudes from this QEngine's internal state, into pagePtr. More...
 
void SetAmplitudePage (const complex *pagePtr, bitCapIntOcl offset, bitCapIntOcl length)
 Copy a "page" of amplitudes from pagePtr into this QEngine's internal state. More...
 
void SetAmplitudePage (QEnginePtr pageEnginePtr, bitCapIntOcl srcOffset, bitCapIntOcl dstOffset, bitCapIntOcl length)
 Copy a "page" of amplitudes from another QEngine, pointed to by pageEnginePtr, into this QEngine's internal state. More...
 
void ShuffleBuffers (QEnginePtr engine)
 Swap the high half of this engine with the low half of another. More...
 
void CopyStateVec (QEnginePtr src)
 Exactly copy the state vector of a different QEngine instance. More...
 
QEnginePtr CloneEmpty ()
 Clone this QEngine's settings, with a zeroed state vector. More...
 
void QueueSetDoNormalize (bool doNorm)
 Add an operation to the (OpenCL) queue, to set the value of doNormalize, which controls whether to automatically normalize the state. More...
 
void QueueSetRunningNorm (real1_f runningNrm)
 Add an operation to the (OpenCL) queue, to set the value of runningNorm, which is the normalization constant for the next normalization operation. More...
 
void SetQuantumState (const complex *inputState)
 Set arbitrary pure quantum state, in unsigned int permutation basis. More...
 
void GetQuantumState (complex *outputState)
 Get pure quantum state, in unsigned int permutation basis. More...
 
void GetProbs (real1 *outputProbs)
 Get all probabilities, in unsigned int permutation basis. More...
 
complex GetAmplitude (const bitCapInt &perm)
 Get the representational amplitude of a full permutation. More...
 
void SetAmplitude (const bitCapInt &perm, const complex &amp)
 Sets the representational amplitude of a full permutation. More...
 
bitLenInt Compose (QEngineCPUPtr toCopy)
 Combine (a copy of) another QEngineCPU with this one, after the last bit index of this one. More...
 
bitLenInt Compose (QInterfacePtr toCopy)
 Combine another QInterface with this one, after the last bit index of this one. More...
 
std::map< QInterfacePtr, bitLenIntCompose (std::vector< QInterfacePtr > toCopy)
 Combine (copies) each QEngineCPU in the vector with this one, after the last bit index of this one. More...
 
bitLenInt Compose (QEngineCPUPtr toCopy, bitLenInt start)
 Combine (a copy of) another QEngineCPU with this one, inserted at the "start" index. More...
 
bitLenInt Compose (QInterfacePtr toCopy, bitLenInt start)
 Compose() a QInterface peer, inserting its qubit into index order at start index. More...
 
void Decompose (bitLenInt start, QInterfacePtr dest)
 Minimally decompose a set of contiguous bits from the separably composed unit, into "destination". More...
 
void Dispose (bitLenInt start, bitLenInt length)
 Minimally decompose a set of contiguous bits from the separably composed unit, and discard the separable bits from index "start" for "length.". More...
 
void Dispose (bitLenInt start, bitLenInt length, const bitCapInt &disposedPerm)
 Dispose a a contiguous set of qubits that are already in a permutation eigenstate. More...
 
bitLenInt Allocate (bitLenInt start, bitLenInt length)
 Allocate new "length" count of |0> state qubits at specified qubit index start position. More...
 
void XMask (const bitCapInt &mask)
 Masked X gate. More...
 
void PhaseParity (real1_f radians, const bitCapInt &mask)
 Parity phase gate. More...
 
void PhaseRootNMask (bitLenInt n, const bitCapInt &mask)
 Masked PhaseRootN gate. More...
 
void ROL (bitLenInt shift, bitLenInt start, bitLenInt length)
 "Circular shift left" - shift bits left, and carry last bits. More...
 
void INC (const bitCapInt &toAdd, bitLenInt start, bitLenInt length)
 Add integer (without sign) More...
 
void CINC (const bitCapInt &toAdd, bitLenInt inOutStart, bitLenInt length, const std::vector< bitLenInt > &controls)
 Add integer (without sign, with controls) More...
 
void INCS (const bitCapInt &toAdd, bitLenInt start, bitLenInt length, bitLenInt overflowIndex)
 Add an integer to the register, with sign and without carry. More...
 
void INCBCD (const bitCapInt &toAdd, bitLenInt start, bitLenInt length)
 Add BCD integer (without sign) More...
 
void MUL (const bitCapInt &toMul, bitLenInt inOutStart, bitLenInt carryStart, bitLenInt length)
 Multiply by integer. More...
 
void DIV (const bitCapInt &toDiv, bitLenInt inOutStart, bitLenInt carryStart, bitLenInt length)
 Divide by integer. More...
 
void MULModNOut (const bitCapInt &toMul, const bitCapInt &modN, bitLenInt inStart, bitLenInt outStart, bitLenInt length)
 Multiplication modulo N by integer, (out of place) More...
 
void IMULModNOut (const bitCapInt &toMul, const bitCapInt &modN, bitLenInt inStart, bitLenInt outStart, bitLenInt length)
 Inverse of multiplication modulo N by integer, (out of place) More...
 
void POWModNOut (const bitCapInt &base, const bitCapInt &modN, bitLenInt inStart, bitLenInt outStart, bitLenInt length)
 Raise a classical base to a quantum power, modulo N, (out of place) More...
 
void CMUL (const bitCapInt &toMul, bitLenInt inOutStart, bitLenInt carryStart, bitLenInt length, const std::vector< bitLenInt > &controls)
 Controlled multiplication by integer. More...
 
void CDIV (const bitCapInt &toDiv, bitLenInt inOutStart, bitLenInt carryStart, bitLenInt length, const std::vector< bitLenInt > &controls)
 Controlled division by power of integer. More...
 
void CMULModNOut (const bitCapInt &toMul, const bitCapInt &modN, bitLenInt inStart, bitLenInt outStart, bitLenInt length, const std::vector< bitLenInt > &controls)
 Controlled multiplication modulo N by integer, (out of place) More...
 
void CIMULModNOut (const bitCapInt &toMul, const bitCapInt &modN, bitLenInt inStart, bitLenInt outStart, bitLenInt length, const std::vector< bitLenInt > &controls)
 Inverse of controlled multiplication modulo N by integer, (out of place) More...
 
void CPOWModNOut (const bitCapInt &base, const bitCapInt &modN, bitLenInt inStart, bitLenInt outStart, bitLenInt length, const std::vector< bitLenInt > &controls)
 Controlled, raise a classical base to a quantum power, modulo N, (out of place) More...
 
void FullAdd (bitLenInt inputBit1, bitLenInt inputBit2, bitLenInt carryInSumOut, bitLenInt carryOut)
 Quantum analog of classical "Full Adder" gate. More...
 
void IFullAdd (bitLenInt inputBit1, bitLenInt inputBit2, bitLenInt carryInSumOut, bitLenInt carryOut)
 Inverse of FullAdd. More...
 
bitCapInt IndexedLDA (bitLenInt indexStart, bitLenInt indexLength, bitLenInt valueStart, bitLenInt valueLength, const unsigned char *values, bool resetValue=true)
 Set 8 bit register bits based on read from classical memory. More...
 
bitCapInt IndexedADC (bitLenInt indexStart, bitLenInt indexLength, bitLenInt valueStart, bitLenInt valueLength, bitLenInt carryIndex, const unsigned char *values)
 Add based on an indexed load from classical memory. More...
 
bitCapInt IndexedSBC (bitLenInt indexStart, bitLenInt indexLength, bitLenInt valueStart, bitLenInt valueLength, bitLenInt carryIndex, const unsigned char *values)
 Subtract based on an indexed load from classical memory. More...
 
void Hash (bitLenInt start, bitLenInt length, const unsigned char *values)
 Transform a length of qubit register via lookup through a hash table. More...
 
void CPhaseFlipIfLess (const bitCapInt &greaterPerm, bitLenInt start, bitLenInt length, bitLenInt flagIndex)
 The 6502 uses its carry flag also as a greater-than/less-than flag, for the CMP operation. More...
 
void PhaseFlipIfLess (const bitCapInt &greaterPerm, bitLenInt start, bitLenInt length)
 This is an expedient for an adaptive Grover's search for a function's global minimum. More...
 
void SetPermutation (const bitCapInt &perm, const complex &phaseFac=CMPLX_DEFAULT_ARG)
 Set to a specific permutation of all qubits. More...
 
void UniformlyControlledSingleBit (const std::vector< bitLenInt > &controls, bitLenInt qubitIndex, const complex *mtrxs, const std::vector< bitCapInt > &mtrxSkipPowers, const bitCapInt &mtrxSkipValueMask)
 
void UniformParityRZ (const bitCapInt &mask, real1_f angle)
 If the target qubit set parity is odd, this applies a phase factor of \(e^{i angle}\). More...
 
void CUniformParityRZ (const std::vector< bitLenInt > &controls, const bitCapInt &mask, real1_f angle)
 If the controls are set and the target qubit set parity is odd, this applies a phase factor of \(e^{i angle}\). More...
 
real1_f Prob (bitLenInt qubitIndex)
 PSEUDO-QUANTUM Direct measure of bit probability to be in |1> state. More...
 
real1_f CtrlOrAntiProb (bool controlState, bitLenInt control, bitLenInt target)
 PSEUDO-QUANTUM Direct measure of bit probability to be in |1> state, if control is in |0>/|1>, false/true, "controlState". More...
 
real1_f ProbReg (bitLenInt start, bitLenInt length, const bitCapInt &permutation)
 Direct measure of register permutation probability. More...
 
real1_f ProbMask (const bitCapInt &mask, const bitCapInt &permutation)
 Direct measure of masked permutation probability. More...
 
real1_f ProbParity (const bitCapInt &mask)
 Overall probability of any odd permutation of the masked set of bits. More...
 
bitCapInt MAll ()
 Measure permutation state of all coherent bits. More...
 
bool ForceMParity (const bitCapInt &mask, bool result, bool doForce=true)
 Act as if is a measurement of parity of the masked set of qubits was applied, except force the (usually random) result. More...
 
void NormalizeState (real1_f nrm=REAL1_DEFAULT_ARG, real1_f norm_thresh=REAL1_DEFAULT_ARG, real1_f phaseArg=ZERO_R1_F)
 Apply the normalization factor found by UpdateRunningNorm() or on the fly by a single bit gate. More...
 
real1_f SumSqrDiff (QInterfacePtr toCompare)
 Calculates (1 - <\psi_e|\psi_c>) between states |\psi_c> and |\psi_e>. More...
 
real1_f SumSqrDiff (QEngineCPUPtr toCompare)
 
QInterfacePtr Clone ()
 Clone this QInterface. More...
 
virtual QInterfacePtr Decompose (bitLenInt start, bitLenInt length)
 
virtual void Decompose (bitLenInt start, QInterfacePtr dest)=0
 Minimally decompose a set of contiguous bits from the separably composed unit, into "destination". More...
 
virtual QInterfacePtr Decompose (bitLenInt start, bitLenInt length)=0
 Schmidt decompose a length of qubits. More...
 
- Public Member Functions inherited from Qrack::QEngine
 QEngine (bitLenInt qBitCount, qrack_rand_gen_ptr rgp=nullptr, bool doNorm=false, bool randomGlobalPhase=true, bool useHostMem=false, bool useHardwareRNG=true, real1_f norm_thresh=REAL1_EPSILON)
 
 QEngine ()
 Default constructor, primarily for protected internal use. More...
 
virtual ~QEngine ()
 
virtual void SetQubitCount (bitLenInt qb)
 
virtual real1_f GetRunningNorm ()
 Get in-flight renormalization factor. More...
 
virtual void SwitchHostPtr (bool useHostMem)
 Switch to/from host/device state vector bufffer. More...
 
virtual void ResetHostPtr ()
 Reset host/device state vector bufffer usage to default. More...
 
virtual int64_t GetDevice ()
 Get GPU device ID. More...
 
virtual void ZMask (const bitCapInt &mask)
 Masked Z gate. More...
 
virtual bool ForceM (bitLenInt qubitIndex, bool result, bool doForce=true, bool doApply=true)
 PSEUDO-QUANTUM - Acts like a measurement gate, except with a specified forced result. More...
 
virtual bitCapInt ForceM (const std::vector< bitLenInt > &bits, const std::vector< bool > &values, bool doApply=true)
 Measure permutation state of a register. More...
 
virtual bitCapInt ForceMReg (bitLenInt start, bitLenInt length, const bitCapInt &result, bool doForce=true, bool doApply=true)
 Measure permutation state of a register. More...
 
virtual void ApplyM (const bitCapInt &qPower, bool result, const complex &nrm)
 
virtual void Mtrx (const complex *mtrx, bitLenInt qubit)
 Apply an arbitrary single bit unitary transformation. More...
 
virtual void MCMtrx (const std::vector< bitLenInt > &controls, const complex *mtrx, bitLenInt target)
 Apply an arbitrary single bit unitary transformation, with arbitrary control bits. More...
 
virtual void MACMtrx (const std::vector< bitLenInt > &controls, const complex *mtrx, bitLenInt target)
 Apply an arbitrary single bit unitary transformation, with arbitrary (anti-)control bits. More...
 
virtual void UCMtrx (const std::vector< bitLenInt > &controls, const complex *mtrx, bitLenInt target, const bitCapInt &controlPerm)
 Apply an arbitrary single bit unitary transformation, with arbitrary control bits, with arbitary control permutation. More...
 
virtual void CSwap (const std::vector< bitLenInt > &controls, bitLenInt qubit1, bitLenInt qubit2)
 Apply a swap with arbitrary control bits. More...
 
virtual void AntiCSwap (const std::vector< bitLenInt > &controls, bitLenInt qubit1, bitLenInt qubit2)
 Apply a swap with arbitrary (anti) control bits. More...
 
virtual void CSqrtSwap (const std::vector< bitLenInt > &controls, bitLenInt qubit1, bitLenInt qubit2)
 Apply a square root of swap with arbitrary control bits. More...
 
virtual void AntiCSqrtSwap (const std::vector< bitLenInt > &controls, bitLenInt qubit1, bitLenInt qubit2)
 Apply a square root of swap with arbitrary (anti) control bits. More...
 
virtual void CISqrtSwap (const std::vector< bitLenInt > &controls, bitLenInt qubit1, bitLenInt qubit2)
 Apply an inverse square root of swap with arbitrary control bits. More...
 
virtual void AntiCISqrtSwap (const std::vector< bitLenInt > &controls, bitLenInt qubit1, bitLenInt qubit2)
 Apply an inverse square root of swap with arbitrary (anti) control bits. More...
 
virtual bool M (bitLenInt q)
 
virtual void X (bitLenInt q)
 
virtual void DEC (const bitCapInt &toSub, bitLenInt start, bitLenInt length)
 Add integer (without sign) More...
 
virtual void INCC (const bitCapInt &toAdd, bitLenInt start, bitLenInt length, bitLenInt carryIndex)
 Add integer (without sign, with carry) More...
 
virtual void DECC (const bitCapInt &toSub, bitLenInt start, bitLenInt length, bitLenInt carryIndex)
 Subtract classical integer (without sign, with carry) More...
 
virtual void DECS (const bitCapInt &toSub, bitLenInt start, bitLenInt length, bitLenInt overflowIndex)
 Add a classical integer to the register, with sign and without carry. More...
 
virtual void CDEC (const bitCapInt &toSub, bitLenInt inOutStart, bitLenInt length, const std::vector< bitLenInt > &controls)
 Subtract integer (without sign, with controls) More...
 
virtual void Swap (bitLenInt qubit1, bitLenInt qubit2)
 Swap values of two bits in register. More...
 
virtual void ISwap (bitLenInt qubit1, bitLenInt qubit2)
 Swap values of two bits in register, and apply phase factor of i if bits are different. More...
 
virtual void IISwap (bitLenInt qubit1, bitLenInt qubit2)
 Inverse ISwap - Swap values of two bits in register, and apply phase factor of -i if bits are different. More...
 
virtual void SqrtSwap (bitLenInt qubit1, bitLenInt qubit2)
 Square root of Swap gate. More...
 
virtual void ISqrtSwap (bitLenInt qubit1, bitLenInt qubit2)
 Inverse square root of Swap gate. More...
 
virtual void FSim (real1_f theta, real1_f phi, bitLenInt qubitIndex1, bitLenInt qubitIndex2)
 The 2-qubit "fSim" gate, (useful in the simulation of particles with fermionic statistics) More...
 
virtual real1_f ProbAll (const bitCapInt &fullRegister)
 Direct measure of full permutation probability. More...
 
virtual real1_f CProb (bitLenInt control, bitLenInt target)
 Direct measure of bit probability to be in |1> state, if control bit is |1>. More...
 
virtual real1_f ACProb (bitLenInt control, bitLenInt target)
 Direct measure of bit probability to be in |1> state, if control bit is |0>. More...
 
virtual void ProbRegAll (bitLenInt start, bitLenInt length, real1 *probsArray)
 
virtual void ApplyControlled2x2 (const std::vector< bitLenInt > &controls, bitLenInt target, const complex *mtrx)
 
virtual void ApplyAntiControlled2x2 (const std::vector< bitLenInt > &controls, bitLenInt target, const complex *mtrx)
 
virtual QInterfacePtr Decompose (bitLenInt start, bitLenInt length)
 Schmidt decompose a length of qubits. More...
 
virtual std::map< bitCapInt, int > MultiShotMeasureMask (const std::vector< bitCapInt > &qPowers, unsigned shots)
 Statistical measure of masked permutation probability. More...
 
virtual void MultiShotMeasureMask (const std::vector< bitCapInt > &qPowers, unsigned shots, unsigned long long *shotsArray)
 Statistical measure of masked permutation probability (returned as array) More...
 
virtual bool M (bitLenInt qubit)
 Measurement gate. More...
 
virtual bitCapInt M (const std::vector< bitLenInt > &bits)
 Measure bits with indices in array, and return a mask of the results. More...
 
virtual void X (bitLenInt qubit)
 X gate. More...
 
virtual void X (bitLenInt start, bitLenInt length)
 Bitwise Pauli X (or logical "NOT") operator. More...
 
virtual void Swap (bitLenInt qubit1, bitLenInt qubit2)
 Swap values of two bits in register. More...
 
virtual void ISwap (bitLenInt qubit1, bitLenInt qubit2)
 Swap values of two bits in register, and apply phase factor of i if bits are different. More...
 
virtual void IISwap (bitLenInt qubit1, bitLenInt qubit2)
 Inverse ISwap - Swap values of two bits in register, and apply phase factor of -i if bits are different. More...
 
virtual void SqrtSwap (bitLenInt qubit1, bitLenInt qubit2)
 Square root of Swap gate. More...
 
virtual void ISqrtSwap (bitLenInt qubit1, bitLenInt qubit2)
 Inverse square root of Swap gate. More...
 
virtual void FSim (real1_f theta, real1_f phi, bitLenInt qubit1, bitLenInt qubit2)=0
 The 2-qubit "fSim" gate, (useful in the simulation of particles with fermionic statistics) More...
 
virtual void Decompose (bitLenInt start, QInterfacePtr dest)=0
 Minimally decompose a set of contiguous bits from the separably composed unit, into "destination". More...
 
virtual QInterfacePtr Decompose (bitLenInt start, bitLenInt length)=0
 Schmidt decompose a length of qubits. More...
 
- Public Member Functions inherited from Qrack::QAlu
virtual void INCSC (const bitCapInt &toAdd, bitLenInt start, bitLenInt length, bitLenInt overflowIndex, bitLenInt carryIndex)
 Add a classical integer to the register, with sign and with carry. More...
 
virtual void INCSC (const bitCapInt &toAdd, bitLenInt start, bitLenInt length, bitLenInt carryIndex)
 Add a classical integer to the register, with sign and with (phase-based) carry. More...
 
virtual void DECSC (const bitCapInt &toSub, bitLenInt start, bitLenInt length, bitLenInt overflowIndex, bitLenInt carryIndex)
 Subtract a classical integer from the register, with sign and with carry. More...
 
virtual void DECSC (const bitCapInt &toSub, bitLenInt start, bitLenInt length, bitLenInt carryIndex)
 Subtract a classical integer from the register, with sign and with carry. More...
 
virtual void DECBCD (const bitCapInt &toSub, bitLenInt start, bitLenInt length)
 Subtract classical BCD integer (without sign) More...
 
virtual void INCBCDC (const bitCapInt &toAdd, bitLenInt start, bitLenInt length, bitLenInt carryIndex)
 Add classical BCD integer (without sign, with carry) More...
 
virtual void DECBCDC (const bitCapInt &toSub, bitLenInt start, bitLenInt length, bitLenInt carryIndex)
 Subtract BCD integer (without sign, with carry) More...
 
- Public Member Functions inherited from Qrack::QParity
virtual bool MParity (const bitCapInt &mask)
 Measure (and collapse) parity of the masked set of qubits. More...
 
- Public Member Functions inherited from Qrack::QInterface
 QInterface (bitLenInt n, qrack_rand_gen_ptr rgp=nullptr, bool doNorm=false, bool useHardwareRNG=true, bool randomGlobalPhase=true, real1_f norm_thresh=REAL1_EPSILON)
 
 QInterface ()
 Default constructor, primarily for protected internal use. More...
 
virtual ~QInterface ()
 
void SetRandomSeed (uint32_t seed)
 
virtual void SetConcurrency (uint32_t threadsPerEngine)
 Set the number of threads in parallel for loops, per component QEngine. More...
 
virtual bitLenInt GetQubitCount ()
 Get the count of bits in this register. More...
 
virtual bitCapInt GetMaxQPower ()
 Get the maximum number of basis states, namely \( 2^n \) for \( n \) qubits. More...
 
virtual bool GetIsArbitraryGlobalPhase ()
 
real1_f Rand ()
 Generate a random real number between 0 and 1. More...
 
virtual bitLenInt ComposeNoClone (QInterfacePtr toCopy)
 This is a variant of Compose() for a toCopy argument that will definitely not be reused once "Composed," hence more aggressive optimization can be done. More...
 
virtual bitLenInt Allocate (bitLenInt length)
 Allocate new "length" count of |0> state qubits at end of qubit index position. More...
 
virtual void Phase (const complex &topLeft, const complex &bottomRight, bitLenInt qubit)
 Apply a single bit transformation that only effects phase. More...
 
virtual void Invert (const complex &topRight, const complex &bottomLeft, bitLenInt qubit)
 Apply a single bit transformation that reverses bit probability and might effect phase. More...
 
virtual void MCPhase (const std::vector< bitLenInt > &controls, const complex &topLeft, const complex &bottomRight, bitLenInt target)
 Apply a single bit transformation that only effects phase, with arbitrary control bits. More...
 
virtual void MCInvert (const std::vector< bitLenInt > &controls, const complex &topRight, const complex &bottomLeft, bitLenInt target)
 Apply a single bit transformation that reverses bit probability and might effect phase, with arbitrary control bits. More...
 
virtual void MACPhase (const std::vector< bitLenInt > &controls, const complex &topLeft, const complex &bottomRight, bitLenInt target)
 Apply a single bit transformation that only effects phase, with arbitrary (anti-)control bits. More...
 
virtual void MACInvert (const std::vector< bitLenInt > &controls, const complex &topRight, const complex &bottomLeft, bitLenInt target)
 Apply a single bit transformation that reverses bit probability and might effect phase, with arbitrary (anti-)control bits. More...
 
virtual void UCPhase (const std::vector< bitLenInt > &controls, const complex &topLeft, const complex &bottomRight, bitLenInt target, const bitCapInt &perm)
 Apply a single bit transformation that only effects phase, with arbitrary control bits, with arbitrary control permutation. More...
 
virtual void UCInvert (const std::vector< bitLenInt > &controls, const complex &topRight, const complex &bottomLeft, bitLenInt target, const bitCapInt &perm)
 Apply a single bit transformation that reverses bit probability and might effect phase, with arbitrary control bits, with arbitrary control permutation. More...
 
virtual void UniformlyControlledSingleBit (const std::vector< bitLenInt > &controls, bitLenInt qubit, const complex *mtrxs)
 Apply a "uniformly controlled" arbitrary single bit unitary transformation. More...
 
virtual void TimeEvolve (Hamiltonian h, real1_f timeDiff)
 To define a Hamiltonian, give a vector of controlled single bit gates ("HamiltonianOp" instances) that are applied by left-multiplication in low-to-high vector index order on the state vector. More...
 
virtual void CCNOT (bitLenInt control1, bitLenInt control2, bitLenInt target)
 Doubly-controlled NOT gate. More...
 
virtual void AntiCCNOT (bitLenInt control1, bitLenInt control2, bitLenInt target)
 Anti doubly-controlled NOT gate. More...
 
virtual void CNOT (bitLenInt control, bitLenInt target)
 Controlled NOT gate. More...
 
virtual void AntiCNOT (bitLenInt control, bitLenInt target)
 Anti controlled NOT gate. More...
 
virtual void CY (bitLenInt control, bitLenInt target)
 Controlled Y gate. More...
 
virtual void AntiCY (bitLenInt control, bitLenInt target)
 Anti controlled Y gate. More...
 
virtual void CCY (bitLenInt control1, bitLenInt control2, bitLenInt target)
 Doubly-Controlled Y gate. More...
 
virtual void AntiCCY (bitLenInt control1, bitLenInt control2, bitLenInt target)
 Anti doubly-controlled Y gate. More...
 
virtual void CZ (bitLenInt control, bitLenInt target)
 Controlled Z gate. More...
 
virtual void AntiCZ (bitLenInt control, bitLenInt target)
 Anti controlled Z gate. More...
 
virtual void CCZ (bitLenInt control1, bitLenInt control2, bitLenInt target)
 Doubly-Controlled Z gate. More...
 
virtual void AntiCCZ (bitLenInt control1, bitLenInt control2, bitLenInt target)
 Anti doubly-controlled Z gate. More...
 
virtual void U (bitLenInt target, real1_f theta, real1_f phi, real1_f lambda)
 General unitary gate. More...
 
virtual void U2 (bitLenInt target, real1_f phi, real1_f lambda)
 2-parameter unitary gate More...
 
virtual void IU2 (bitLenInt target, real1_f phi, real1_f lambda)
 Inverse 2-parameter unitary gate. More...
 
virtual void AI (bitLenInt target, real1_f azimuth, real1_f inclination)
 "Azimuth, Inclination" (RY-RZ) More...
 
virtual void IAI (bitLenInt target, real1_f azimuth, real1_f inclination)
 Invert "Azimuth, Inclination" (RY-RZ) More...
 
virtual void CAI (bitLenInt control, bitLenInt target, real1_f azimuth, real1_f inclination)
 Controlled "Azimuth, Inclination" (RY-RZ) More...
 
virtual void AntiCAI (bitLenInt control, bitLenInt target, real1_f azimuth, real1_f inclination)
 (Anti-)Controlled "Azimuth, Inclination" (RY-RZ) More...
 
virtual void CIAI (bitLenInt control, bitLenInt target, real1_f azimuth, real1_f inclination)
 Controlled inverse "Azimuth, Inclination" (RY-RZ) More...
 
virtual void AntiCIAI (bitLenInt control, bitLenInt target, real1_f azimuth, real1_f inclination)
 (Anti-)Controlled inverse "Azimuth, Inclination" (RY-RZ) More...
 
virtual void CU (const std::vector< bitLenInt > &controls, bitLenInt target, real1_f theta, real1_f phi, real1_f lambda)
 Controlled general unitary gate. More...
 
virtual void AntiCU (const std::vector< bitLenInt > &controls, bitLenInt target, real1_f theta, real1_f phi, real1_f lambda)
 (Anti-)Controlled general unitary gate More...
 
virtual void H (bitLenInt qubit)
 Hadamard gate. More...
 
virtual void SqrtH (bitLenInt qubit)
 Square root of Hadamard gate. More...
 
virtual void SH (bitLenInt qubit)
 Y-basis transformation gate. More...
 
virtual void HIS (bitLenInt qubit)
 Y-basis (inverse) transformation gate. More...
 
virtual void S (bitLenInt qubit)
 S gate. More...
 
virtual void IS (bitLenInt qubit)
 Inverse S gate. More...
 
virtual void T (bitLenInt qubit)
 T gate. More...
 
virtual void IT (bitLenInt qubit)
 Inverse T gate. More...
 
virtual void PhaseRootN (bitLenInt n, bitLenInt qubit)
 "PhaseRootN" gate More...
 
virtual void Y (bitLenInt qubit)
 Y gate. More...
 
virtual void YMask (const bitCapInt &mask)
 Masked Y gate. More...
 
virtual void Z (bitLenInt qubit)
 Z gate. More...
 
virtual void SqrtX (bitLenInt qubit)
 Square root of X gate. More...
 
virtual void ISqrtX (bitLenInt qubit)
 Inverse square root of X gate. More...
 
virtual void SqrtY (bitLenInt qubit)
 Square root of Y gate. More...
 
virtual void ISqrtY (bitLenInt qubit)
 Inverse square root of Y gate. More...
 
virtual void SqrtW (bitLenInt qubit)
 Square root of W gate. More...
 
virtual void ISqrtW (bitLenInt qubit)
 Inverse square root of W gate. More...
 
virtual void CH (bitLenInt control, bitLenInt target)
 Controlled H gate. More...
 
virtual void AntiCH (bitLenInt control, bitLenInt target)
 (Anti-)controlled H gate More...
 
virtual void CS (bitLenInt control, bitLenInt target)
 Controlled S gate. More...
 
virtual void AntiCS (bitLenInt control, bitLenInt target)
 (Anti-)controlled S gate More...
 
virtual void CIS (bitLenInt control, bitLenInt target)
 Controlled inverse S gate. More...
 
virtual void AntiCIS (bitLenInt control, bitLenInt target)
 (Anti-)controlled inverse S gate More...
 
virtual void CT (bitLenInt control, bitLenInt target)
 Controlled T gate. More...
 
virtual void CIT (bitLenInt control, bitLenInt target)
 Controlled inverse T gate. More...
 
virtual void CPhaseRootN (bitLenInt n, bitLenInt control, bitLenInt target)
 Controlled "PhaseRootN" gate. More...
 
virtual void AntiCPhaseRootN (bitLenInt n, bitLenInt control, bitLenInt target)
 (Anti-)controlled "PhaseRootN" gate More...
 
virtual void CIPhaseRootN (bitLenInt n, bitLenInt control, bitLenInt target)
 Controlled inverse "PhaseRootN" gate. More...
 
virtual void AntiCIPhaseRootN (bitLenInt n, bitLenInt control, bitLenInt target)
 (Anti-)controlled inverse "PhaseRootN" gate More...
 
virtual void AND (bitLenInt inputBit1, bitLenInt inputBit2, bitLenInt outputBit)
 Quantum analog of classical "AND" gate. More...
 
virtual void OR (bitLenInt inputBit1, bitLenInt inputBit2, bitLenInt outputBit)
 Quantum analog of classical "OR" gate. More...
 
virtual void XOR (bitLenInt inputBit1, bitLenInt inputBit2, bitLenInt outputBit)
 Quantum analog of classical "XOR" gate. More...
 
virtual void CLAND (bitLenInt inputQBit, bool inputClassicalBit, bitLenInt outputBit)
 Quantum analog of classical "AND" gate. More...
 
virtual void CLOR (bitLenInt inputQBit, bool inputClassicalBit, bitLenInt outputBit)
 Quantum analog of classical "OR" gate. More...
 
virtual void CLXOR (bitLenInt inputQBit, bool inputClassicalBit, bitLenInt outputBit)
 Quantum analog of classical "XOR" gate. More...
 
virtual void NAND (bitLenInt inputBit1, bitLenInt inputBit2, bitLenInt outputBit)
 Quantum analog of classical "NAND" gate. More...
 
virtual void NOR (bitLenInt inputBit1, bitLenInt inputBit2, bitLenInt outputBit)
 Quantum analog of classical "NOR" gate. More...
 
virtual void XNOR (bitLenInt inputBit1, bitLenInt inputBit2, bitLenInt outputBit)
 Quantum analog of classical "XNOR" gate. More...
 
virtual void CLNAND (bitLenInt inputQBit, bool inputClassicalBit, bitLenInt outputBit)
 Quantum analog of classical "NAND" gate. More...
 
virtual void CLNOR (bitLenInt inputQBit, bool inputClassicalBit, bitLenInt outputBit)
 Quantum analog of classical "NOR" gate. More...
 
virtual void CLXNOR (bitLenInt inputQBit, bool inputClassicalBit, bitLenInt outputBit)
 Quantum analog of classical "XNOR" gate. More...
 
virtual void UniformlyControlledRY (const std::vector< bitLenInt > &controls, bitLenInt qubit, real1 const *angles)
 Apply a "uniformly controlled" rotation of a bit around the Pauli Y axis. More...
 
virtual void UniformlyControlledRZ (const std::vector< bitLenInt > &controls, bitLenInt qubit, real1 const *angles)
 Apply a "uniformly controlled" rotation of a bit around the Pauli Z axis. More...
 
virtual void RT (real1_f radians, bitLenInt qubit)
 Phase shift gate. More...
 
virtual void RX (real1_f radians, bitLenInt qubit)
 X axis rotation gate. More...
 
virtual void RY (real1_f radians, bitLenInt qubit)
 Y axis rotation gate. More...
 
virtual void RZ (real1_f radians, bitLenInt qubit)
 Z axis rotation gate. More...
 
virtual void CRZ (real1_f radians, bitLenInt control, bitLenInt target)
 Controlled Z axis rotation gate. More...
 
virtual void CRY (real1_f radians, bitLenInt control, bitLenInt target)
 Controlled Y axis rotation gate. More...
 
virtual void RTDyad (int numerator, int denomPower, bitLenInt qubit)
 Dyadic fraction phase shift gate. More...
 
virtual void RXDyad (int numerator, int denomPower, bitLenInt qubit)
 Dyadic fraction X axis rotation gate. More...
 
virtual void Exp (real1_f radians, bitLenInt qubit)
 (Identity) Exponentiation gate More...
 
virtual void Exp (const std::vector< bitLenInt > &controls, bitLenInt qubit, const complex *matrix2x2, bool antiCtrled=false)
 Imaginary exponentiation of arbitrary 2x2 gate. More...
 
virtual void ExpDyad (int numerator, int denomPower, bitLenInt qubit)
 Dyadic fraction (identity) exponentiation gate. More...
 
virtual void ExpX (real1_f radians, bitLenInt qubit)
 Pauli X exponentiation gate. More...
 
virtual void ExpXDyad (int numerator, int denomPower, bitLenInt qubit)
 Dyadic fraction Pauli X exponentiation gate. More...
 
virtual void ExpY (real1_f radians, bitLenInt qubit)
 Pauli Y exponentiation gate. More...
 
virtual void ExpYDyad (int numerator, int denomPower, bitLenInt qubit)
 Dyadic fraction Pauli Y exponentiation gate. More...
 
virtual void ExpZ (real1_f radians, bitLenInt qubit)
 Pauli Z exponentiation gate. More...
 
virtual void ExpZDyad (int numerator, int denomPower, bitLenInt qubit)
 Dyadic fraction Pauli Z exponentiation gate. More...
 
virtual void CRX (real1_f radians, bitLenInt control, bitLenInt target)
 Controlled X axis rotation gate. More...
 
virtual void CRXDyad (int numerator, int denomPower, bitLenInt control, bitLenInt target)
 Controlled dyadic fraction X axis rotation gate. More...
 
virtual void RYDyad (int numerator, int denomPower, bitLenInt qubit)
 Dyadic fraction Y axis rotation gate. More...
 
virtual void CRYDyad (int numerator, int denomPower, bitLenInt control, bitLenInt target)
 Controlled dyadic fraction y axis rotation gate. More...
 
virtual void RZDyad (int numerator, int denomPower, bitLenInt qubit)
 Dyadic fraction Z axis rotation gate. More...
 
virtual void CRZDyad (int numerator, int denomPower, bitLenInt control, bitLenInt target)
 Controlled dyadic fraction Z axis rotation gate. More...
 
virtual void CRT (real1_f radians, bitLenInt control, bitLenInt target)
 Controlled "phase shift gate". More...
 
virtual void CRTDyad (int numerator, int denomPower, bitLenInt control, bitLenInt target)
 Controlled dyadic fraction "phase shift gate". More...
 
virtual void H (bitLenInt start, bitLenInt length)
 Bitwise Hadamard. More...
 
virtual void X (bitLenInt start, bitLenInt length)
 Bitwise Pauli X (or logical "NOT") operator. More...
 
virtual void ROR (bitLenInt shift, bitLenInt start, bitLenInt length)
 Circular shift right - shift bits right, and carry first bits. More...
 
virtual void ASL (bitLenInt shift, bitLenInt start, bitLenInt length)
 Arithmetic shift left, with last 2 bits as sign and carry. More...
 
virtual void ASR (bitLenInt shift, bitLenInt start, bitLenInt length)
 Arithmetic shift right, with last 2 bits as sign and carry. More...
 
virtual void LSL (bitLenInt shift, bitLenInt start, bitLenInt length)
 Logical shift left, filling the extra bits with |0> More...
 
virtual void LSR (bitLenInt shift, bitLenInt start, bitLenInt length)
 Logical shift right, filling the extra bits with |0> More...
 
virtual void CFullAdd (const std::vector< bitLenInt > &controls, bitLenInt inputBit1, bitLenInt inputBit2, bitLenInt carryInSumOut, bitLenInt carryOut)
 Controlled quantum analog of classical "Full Adder" gate. More...
 
virtual void CIFullAdd (const std::vector< bitLenInt > &controls, bitLenInt inputBit1, bitLenInt inputBit2, bitLenInt carryInSumOut, bitLenInt carryOut)
 Inverse of CFullAdd. More...
 
virtual void ADC (bitLenInt input1, bitLenInt input2, bitLenInt output, bitLenInt length, bitLenInt carry)
 Add a quantum integer to a quantum integer, with carry. More...
 
virtual void IADC (bitLenInt input1, bitLenInt input2, bitLenInt output, bitLenInt length, bitLenInt carry)
 Inverse of ADC. More...
 
virtual void CADC (const std::vector< bitLenInt > &controls, bitLenInt input1, bitLenInt input2, bitLenInt output, bitLenInt length, bitLenInt carry)
 Add a quantum integer to a quantum integer, with carry and with controls. More...
 
virtual void CIADC (const std::vector< bitLenInt > &controls, bitLenInt input1, bitLenInt input2, bitLenInt output, bitLenInt length, bitLenInt carry)
 Inverse of CADC. More...
 
virtual void QFT (bitLenInt start, bitLenInt length, bool trySeparate=false)
 Quantum Fourier Transform - Apply the quantum Fourier transform to the register. More...
 
virtual void QFTR (const std::vector< bitLenInt > &qubits, bool trySeparate=false)
 Quantum Fourier Transform (random access) - Apply the quantum Fourier transform to the register. More...
 
virtual void IQFT (bitLenInt start, bitLenInt length, bool trySeparate=false)
 Inverse Quantum Fourier Transform - Apply the inverse quantum Fourier transform to the register. More...
 
virtual void IQFTR (const std::vector< bitLenInt > &qubits, bool trySeparate=false)
 Inverse Quantum Fourier Transform (random access) - Apply the inverse quantum Fourier transform to the register. More...
 
virtual void ZeroPhaseFlip (bitLenInt start, bitLenInt length)
 Reverse the phase of the state where the register equals zero. More...
 
virtual void PhaseFlip ()
 Phase flip always - equivalent to Z X Z X on any bit in the QInterface. More...
 
virtual void SetReg (bitLenInt start, bitLenInt length, const bitCapInt &value)
 Set register bits to given permutation. More...
 
virtual bitCapInt MReg (bitLenInt start, bitLenInt length)
 Measure permutation state of a register. More...
 
virtual bitCapInt M (const std::vector< bitLenInt > &bits)
 Measure bits with indices in array, and return a mask of the results. More...
 
virtual void Reverse (bitLenInt first, bitLenInt last)
 Reverse all of the bits in a sequence. More...
 
virtual void ProbMaskAll (const bitCapInt &mask, real1 *probsArray)
 Direct measure of masked permutation probability. More...
 
virtual void ProbBitsAll (const std::vector< bitLenInt > &bits, real1 *probsArray)
 Direct measure of listed permutation probability. More...
 
virtual real1_f VarianceBitsAll (const std::vector< bitLenInt > &bits, const bitCapInt &offset=ZERO_BCI)
 Direct measure of variance of listed permutation probability. More...
 
virtual real1_f VarianceBitsAllRdm (bool roundRz, const std::vector< bitLenInt > &bits, const bitCapInt &offset=ZERO_BCI)
 Direct measure of (reduced density matrix) variance of listed permutation probability. More...
 
virtual real1_f VariancePauliAll (std::vector< bitLenInt > bits, std::vector< Pauli > paulis)
 Direct measure of variance of listed Pauli tensor product probability. More...
 
virtual real1_f VarianceUnitaryAll (const std::vector< bitLenInt > &bits, const std::vector< real1_f > &basisOps, std::vector< real1_f > eigenVals={})
 Direct measure of variance of listed (3-parameter) single-qubit tensor product probability. More...
 
virtual real1_f VarianceUnitaryAll (const std::vector< bitLenInt > &bits, const std::vector< std::shared_ptr< complex >> &basisOps, std::vector< real1_f > eigenVals={})
 Direct measure of variance of listed (2x2 operator) single-qubit tensor product probability. More...
 
virtual real1_f VarianceFloatsFactorized (const std::vector< bitLenInt > &bits, const std::vector< real1_f > &weights)
 Direct measure of variance of listed bit string probability. More...
 
virtual real1_f VarianceFloatsFactorizedRdm (bool roundRz, const std::vector< bitLenInt > &bits, const std::vector< real1_f > &weights)
 Direct measure of (reduced density matrix) variance of bits, given an array of qubit weights. More...
 
virtual real1_f VarianceBitsFactorized (const std::vector< bitLenInt > &bits, const std::vector< bitCapInt > &perms, const bitCapInt &offset=ZERO_BCI)
 Get expectation value of bits, given an array of qubit weights. More...
 
virtual real1_f VarianceBitsFactorizedRdm (bool roundRz, const std::vector< bitLenInt > &bits, const std::vector< bitCapInt > &perms, const bitCapInt &offset=ZERO_BCI)
 Get (reduced density matrix) expectation value of bits, given an array of qubit weights. More...
 
virtual real1_f ExpectationBitsAll (const std::vector< bitLenInt > &bits, const bitCapInt &offset=ZERO_BCI)
 Get permutation expectation value of bits. More...
 
virtual real1_f ExpectationPauliAll (std::vector< bitLenInt > bits, std::vector< Pauli > paulis)
 Get Pauli tensor product observable. More...
 
virtual real1_f ExpectationUnitaryAll (const std::vector< bitLenInt > &bits, const std::vector< std::shared_ptr< complex >> &basisOps, std::vector< real1_f > eigenVals={})
 Get single-qubit tensor product (arbitrary real) observable. More...
 
virtual real1_f ExpectationUnitaryAll (const std::vector< bitLenInt > &bits, const std::vector< real1_f > &basisOps, std::vector< real1_f > eigenVals={})
 Get single-qubit (3-parameter) tensor product (arbitrary real) observable. More...
 
virtual real1_f ExpectationBitsFactorized (const std::vector< bitLenInt > &bits, const std::vector< bitCapInt > &perms, const bitCapInt &offset=ZERO_BCI)
 Get expectation value of bits, given an array of qubit weights. More...
 
virtual real1_f ExpectationBitsFactorizedRdm (bool roundRz, const std::vector< bitLenInt > &bits, const std::vector< bitCapInt > &perms, const bitCapInt &offset=ZERO_BCI)
 Get (reduced density matrix) expectation value of bits, given an array of qubit weights. More...
 
virtual real1_f ExpectationFloatsFactorized (const std::vector< bitLenInt > &bits, const std::vector< real1_f > &weights)
 Get expectation value of bits, given a (floating-point) array of qubit weights. More...
 
virtual real1_f ExpectationFloatsFactorizedRdm (bool roundRz, const std::vector< bitLenInt > &bits, const std::vector< real1_f > &weights)
 Get (reduced density matrix) expectation value of bits, given a (floating-point) array of qubit weights. More...
 
virtual real1_f ProbRdm (bitLenInt qubit)
 Direct measure of bit probability to be in |1> state, treating all ancillary qubits as post-selected T gate gadgets. More...
 
virtual real1_f ProbAllRdm (bool roundRz, const bitCapInt &fullRegister)
 Direct measure of full permutation probability, treating all ancillary qubits as post-selected T gate gadgets. More...
 
virtual real1_f ProbMaskRdm (bool roundRz, const bitCapInt &mask, const bitCapInt &permutation)
 Direct measure of masked permutation probability, treating all ancillary qubits as post-selected T gate gadgets. More...
 
virtual real1_f ExpectationBitsAllRdm (bool roundRz, const std::vector< bitLenInt > &bits, const bitCapInt &offset=ZERO_BCI)
 Get permutation expectation value of bits, treating all ancillary qubits as post-selected T gate gadgets. More...
 
virtual void SetBit (bitLenInt qubit, bool value)
 Set individual bit to pure |0> (false) or |1> (true) state. More...
 
virtual bool ApproxCompare (QInterfacePtr toCompare, real1_f error_tol=TRYDECOMPOSE_EPSILON)
 Compare state vectors approximately, to determine whether this state vector is the same as the target. More...
 
virtual bool TryDecompose (bitLenInt start, QInterfacePtr dest, real1_f error_tol=TRYDECOMPOSE_EPSILON)
 Attempt to Decompose() a bit range. More...
 
virtual bool isBinaryDecisionTree ()
 Returns "true" if current state representation is definitely a binary decision tree, "false" if it is definitely not, or "true" if it cannot be determined. More...
 
virtual bool isClifford ()
 Returns "true" if current state is identifiably within the Clifford set, or "false" if it is not or cannot be determined. More...
 
virtual bool isClifford (bitLenInt qubit)
 Returns "true" if current qubit state is identifiably within the Clifford set, or "false" if it is not or cannot be determined. More...
 
virtual bool isOpenCL ()
 Returns "true" if current simulation is OpenCL-based. More...
 
virtual bool TrySeparate (const std::vector< bitLenInt > &qubits, real1_f error_tol)
 Qrack::QUnit types maintain explicit separation of representations of qubits, which reduces memory usage and increases gate speed. More...
 
virtual bool TrySeparate (bitLenInt qubit)
 Single-qubit TrySeparate() More...
 
virtual bool TrySeparate (bitLenInt qubit1, bitLenInt qubit2)
 Two-qubit TrySeparate() More...
 
virtual double GetUnitaryFidelity ()
 When "Schmidt-decomposition rounding parameter" ("SDRP") is being used, starting from initial 1.0 fidelity, we compound the "unitary fidelity" by successive multiplication by one minus two times the true unitary probability discarded in each single rounding event. More...
 
virtual void ResetUnitaryFidelity ()
 Reset the internal fidelity calculation tracker to 1.0. More...
 
virtual void SetSdrp (real1_f sdrp)
 Set the "Schmidt decomposition rounding parameter" value, (between 0 and 1) More...
 
virtual void SetNcrp (real1_f ncrp)
 Set the "Near-clifford rounding parameter" value, (between 0 and 1) More...
 
virtual void SetReactiveSeparate (bool isAggSep)
 Set reactive separation option (on by default if available) More...
 
virtual bool GetReactiveSeparate ()
 Get reactive separation option. More...
 
virtual void SetTInjection (bool useGadget)
 Set the option to use T-injection gadgets (off by default) More...
 
virtual bool GetTInjection ()
 Get the option to use T-injection gadgets. More...
 
virtual void SetNoiseParameter (real1_f lambda)
 Set the noise level option (only for a noisy interface) More...
 
virtual real1_f GetNoiseParameter ()
 Get the noise level option (only for a noisy interface) More...
 
bitCapIntOcl GetMaxSize ()
 Get maximum number of amplitudes that can be allocated on current device. More...
 
virtual void DepolarizingChannelWeak1Qb (bitLenInt qubit, real1_f lambda)
 Simulate a local qubit depolarizing noise channel, under a stochastic "weak simulation condition." Under "weak" condition, sampling and exact state queries are not accurate, but sampling can be achieved via repeated full execution of a noisy circuit, for each hardware-realistic measurement sample. More...
 
virtual bitLenInt DepolarizingChannelStrong1Qb (bitLenInt qubit, real1_f lambda)
 Simulate a local qubit depolarizing noise channel, under a "strong simulation condition." "Strong" condition supports measurement sampling and direct queries of state, but the expression of state is in terms of one retained ancillary qubit per applied noise channel. More...
 
- Public Member Functions inherited from Qrack::ParallelFor
 ParallelFor ()
 
void SetConcurrencyLevel (unsigned num)
 
unsigned GetConcurrencyLevel ()
 
bitCapIntOcl GetStride ()
 
bitLenInt GetPreferredConcurrencyPower ()
 
void par_for_inc (const bitCapIntOcl begin, const bitCapIntOcl itemCount, IncrementFunc, ParallelFunc fn)
 Iterate through the permutations a maximum of end-begin times, allowing the caller to control the incrementation offset through 'inc'. More...
 
void par_for (const bitCapIntOcl begin, const bitCapIntOcl end, ParallelFunc fn)
 Call fn once for every numerical value between begin and end. More...
 
void par_for_skip (const bitCapIntOcl begin, const bitCapIntOcl end, const bitCapIntOcl skipPower, const bitLenInt skipBitCount, ParallelFunc fn)
 Skip over the skipPower bits. More...
 
void par_for_mask (const bitCapIntOcl, const bitCapIntOcl, const std::vector< bitCapIntOcl > &maskArray, ParallelFunc fn)
 Skip over the bits listed in maskArray in the same fashion as par_for_skip. More...
 
void par_for_set (const std::set< bitCapIntOcl > &sparseSet, ParallelFunc fn)
 Iterate over a sparse state vector. More...
 
void par_for_set (const std::vector< bitCapIntOcl > &sparseSet, ParallelFunc fn)
 Iterate over a sparse state vector. More...
 
void par_for_sparse_compose (const std::vector< bitCapIntOcl > &lowSet, const std::vector< bitCapIntOcl > &highSet, const bitLenInt &highStart, ParallelFunc fn)
 Iterate over the power set of 2 sparse state vectors. More...
 
real1_f par_norm (const bitCapIntOcl maxQPower, const StateVectorPtr stateArray, real1_f norm_thresh=ZERO_R1_F)
 Calculate the normal for the array, (with flooring). More...
 
real1_f par_norm_exact (const bitCapIntOcl maxQPower, const StateVectorPtr stateArray)
 Calculate the normal for the array, (without flooring.) More...
 

Protected Types

typedef std::function< bitCapIntOcl(const bitCapIntOcl &, const bitCapIntOcl &)> IOFn
 
typedef std::function< bitCapIntOcl(const bitCapIntOcl &)> MFn
 

Protected Member Functions

StateVectorSparsePtr CastStateVecSparse ()
 
real1_f GetExpectation (bitLenInt valueStart, bitLenInt valueLength)
 
StateVectorPtr AllocStateVec (bitCapIntOcl elemCount)
 
void ResetStateVec (StateVectorPtr sv)
 
void Dispatch (bitCapIntOcl workItemCount, DispatchFn fn)
 
void DecomposeDispose (bitLenInt start, bitLenInt length, QEngineCPUPtr dest)
 Minimally decompose a set of contigious bits from the separable unit. More...
 
void Apply2x2 (bitCapIntOcl offset1, bitCapIntOcl offset2, const complex *mtrx, bitLenInt bitCount, const bitCapIntOcl *qPowersSorted, bool doCalcNorm, real1_f norm_thresh=REAL1_DEFAULT_ARG)
 
void UpdateRunningNorm (real1_f norm_thresh=REAL1_DEFAULT_ARG)
 Force a calculation of the norm of the state vector, in order to make it unit length before the next probability or measurement operation. More...
 
void ApplyM (const bitCapInt &mask, const bitCapInt &result, const complex &nrm)
 
void INCDECC (const bitCapInt &toMod, bitLenInt inOutStart, bitLenInt length, bitLenInt carryIndex)
 Add integer (without sign, with carry) More...
 
void INCDECSC (const bitCapInt &toMod, bitLenInt inOutStart, bitLenInt length, bitLenInt carryIndex)
 Common driver method behind INCSC and DECSC (without overflow flag) More...
 
void INCDECSC (const bitCapInt &toMod, bitLenInt inOutStart, bitLenInt length, bitLenInt overflowIndex, bitLenInt carryIndex)
 Common driver method behind INCSC and DECSC (with overflow flag) More...
 
void INCDECBCDC (const bitCapInt &toMod, bitLenInt inOutStart, bitLenInt length, bitLenInt carryIndex)
 Add BCD integer (without sign, with carry) More...
 
void MULDIV (const IOFn &inFn, const IOFn &outFn, const bitCapInt &toMul, const bitLenInt &inOutStart, const bitLenInt &carryStart, const bitLenInt &length)
 
void CMULDIV (const IOFn &inFn, const IOFn &outFn, const bitCapInt &toMul, const bitLenInt &inOutStart, const bitLenInt &carryStart, const bitLenInt &length, const std::vector< bitLenInt > &controls)
 
void ModNOut (const MFn &kernelFn, const bitCapInt &modN, const bitLenInt &inStart, const bitLenInt &outStart, const bitLenInt &length, const bool &inverse=false)
 
void CModNOut (const MFn &kernelFn, const bitCapInt &modN, const bitLenInt &inStart, const bitLenInt &outStart, const bitLenInt &length, const std::vector< bitLenInt > &controls, const bool &inverse=false)
 
virtual void ApplyM (const bitCapInt &qPower, bool result, const complex &nrm)
 
virtual void ApplyM (const bitCapInt &regMask, const bitCapInt &result, const complex &nrm)=0
 
- Protected Member Functions inherited from Qrack::QEngine
bool IsPhase (const complex *mtrx)
 
bool IsInvert (const complex *mtrx)
 
bool IsIdentity (const complex *mtrx, bool isControlled)
 
void EitherMtrx (const std::vector< bitLenInt > &controls, const complex *mtrx, bitLenInt target, bool isAnti)
 
- Protected Member Functions inherited from Qrack::QInterface
complex GetNonunitaryPhase ()
 
template<typename Fn >
void MACWrapper (const std::vector< bitLenInt > &controls, Fn fn)
 
virtual bitCapInt SampleClone (const std::vector< bitCapInt > &qPowers)
 
virtual real1_f ExpVarUnitaryAll (bool isExp, const std::vector< bitLenInt > &bits, const std::vector< std::shared_ptr< complex >> &basisOps, std::vector< real1_f > eigenVals={})
 
virtual real1_f ExpVarUnitaryAll (bool isExp, const std::vector< bitLenInt > &bits, const std::vector< real1_f > &basisOps, std::vector< real1_f > eigenVals={})
 
virtual real1_f ExpVarBitsAll (bool isExp, const std::vector< bitLenInt > &bits, const bitCapInt &offset=ZERO_BCI)
 

Protected Attributes

bool isSparse
 
StateVectorPtr stateVec
 
- Protected Attributes inherited from Qrack::QEngine
bool useHostRam
 
real1 runningNorm
 The value stored in runningNorm should always be the total probability implied by the norm of all amplitudes, summed, at each update. More...
 
bitCapIntOcl maxQPowerOcl
 
- Protected Attributes inherited from Qrack::QInterface
bool doNormalize
 
bool randGlobalPhase
 
bool useRDRAND
 
bitLenInt qubitCount
 
uint32_t randomSeed
 
real1 amplitudeFloor
 
bitCapInt maxQPower
 
qrack_rand_gen_ptr rand_generator
 
std::uniform_real_distribution< real1_srand_distribution
 
std::shared_ptr< RdRandomhardware_rand_generator
 

Additional Inherited Members

- Static Protected Member Functions inherited from Qrack::QInterface
static real1_f normHelper (const complex &c)
 
static real1_f clampProb (real1_f toClamp)
 

Detailed Description

General purpose QEngineCPU implementation.

Member Typedef Documentation

◆ IOFn

typedef std::function<bitCapIntOcl(const bitCapIntOcl&, const bitCapIntOcl&)> Qrack::QEngineCPU::IOFn
protected

◆ MFn

typedef std::function<bitCapIntOcl(const bitCapIntOcl&)> Qrack::QEngineCPU::MFn
protected

Constructor & Destructor Documentation

◆ QEngineCPU()

Qrack::QEngineCPU::QEngineCPU ( bitLenInt  qBitCount,
const bitCapInt initState,
qrack_rand_gen_ptr  rgp = nullptr,
const complex phaseFac = CMPLX_DEFAULT_ARG,
bool  doNorm = false,
bool  randomGlobalPhase = true,
bool  useHostMem = false,
int64_t  deviceID = -1,
bool  useHardwareRNG = true,
bool  useSparseStateVec = false,
real1_f  norm_thresh = REAL1_EPSILON,
std::vector< int64_t >  devList = {},
bitLenInt  qubitThreshold = 0U,
real1_f  sep_thresh = _qrack_qunit_sep_thresh 
)

Initialize a coherent unit with qBitCount number of bits, to initState unsigned integer permutation state, with a shared random number generator, with a specific phase.

(Note that "useHostMem" is required as a parameter to normalize constructors for use with the CreateQuantumInterface() factory, but it serves no function in QEngineCPU.)

Warning
Overall phase is generally arbitrary and unknowable. Setting two QEngineCPU instances to the same phase usually makes sense only if they are initialized at the same time.

◆ ~QEngineCPU()

Qrack::QEngineCPU::~QEngineCPU ( )
inline

Member Function Documentation

◆ Allocate()

bitLenInt Qrack::QEngineCPU::Allocate ( bitLenInt  start,
bitLenInt  length 
)
virtual

Allocate new "length" count of |0> state qubits at specified qubit index start position.

Implements Qrack::QInterface.

◆ AllocStateVec()

StateVectorPtr Qrack::QEngineCPU::AllocStateVec ( bitCapIntOcl  elemCount)
protected

◆ Apply2x2()

void Qrack::QEngineCPU::Apply2x2 ( bitCapIntOcl  offset1,
bitCapIntOcl  offset2,
const complex mtrx,
bitLenInt  bitCount,
const bitCapIntOcl qPowersSorted,
bool  doCalcNorm,
real1_f  norm_thresh = REAL1_DEFAULT_ARG 
)
protectedvirtual

Implements Qrack::QEngine.

◆ ApplyM() [1/3]

void Qrack::QEngineCPU::ApplyM ( const bitCapInt mask,
const bitCapInt result,
const complex nrm 
)
protectedvirtual

Implements Qrack::QEngine.

◆ ApplyM() [2/3]

virtual void Qrack::QEngine::ApplyM
inlineprotected

◆ ApplyM() [3/3]

virtual void Qrack::QEngine::ApplyM
protected

◆ CastStateVecSparse()

StateVectorSparsePtr Qrack::QEngineCPU::CastStateVecSparse ( )
inlineprotected

◆ CloneEmpty()

QEnginePtr Qrack::QEngineCPU::CloneEmpty ( )
virtual

Clone this QEngine's settings, with a zeroed state vector.

Implements Qrack::QEngine.

◆ CModNOut()

void Qrack::QEngineCPU::CModNOut ( const MFn kernelFn,
const bitCapInt modN,
const bitLenInt inStart,
const bitLenInt outStart,
const bitLenInt length,
const std::vector< bitLenInt > &  controls,
const bool &  inverse = false 
)
protected

◆ CMULDIV()

void Qrack::QEngineCPU::CMULDIV ( const IOFn inFn,
const IOFn outFn,
const bitCapInt toMul,
const bitLenInt inOutStart,
const bitLenInt carryStart,
const bitLenInt length,
const std::vector< bitLenInt > &  controls 
)
protected

◆ Compose() [1/5]

bitLenInt Qrack::QEngineCPU::Compose ( QEngineCPUPtr  toCopy)

Combine (a copy of) another QEngineCPU with this one, after the last bit index of this one.

(If the programmer doesn't want to "cheat," it is left up to them to delete the old unit that was added.

◆ Compose() [2/5]

bitLenInt Qrack::QEngineCPU::Compose ( QEngineCPUPtr  toCopy,
bitLenInt  start 
)

Combine (a copy of) another QEngineCPU with this one, inserted at the "start" index.

(If the programmer doesn't want to "cheat," it is left up to them to delete the old unit that was added.

◆ Compose() [3/5]

bitLenInt Qrack::QEngineCPU::Compose ( QInterfacePtr  toCopy)
inlinevirtual

Combine another QInterface with this one, after the last bit index of this one.

"Compose" combines the quantum description of state of two independent QInterface objects into one object, containing the full permutation basis of the full object. The "inputState" bits are added after the last qubit index of the QInterface to which we "Compose." Informally, "Compose" is equivalent to "just setting another group of qubits down next to the first" without interacting them. Schroedinger's equation can form a description of state for two independent subsystems at once or "separable quantum subsystems" without interacting them. Once the description of state of the independent systems is combined, we can interact them, and we can describe their entanglements to each other, in which case they are no longer independent. A full entangled description of quantum state is not possible for two independent quantum subsystems until we "Compose" them.

"Compose" multiplies the probabilities of the indepedent permutation states of the two subsystems to find the probabilites of the entire set of combined permutations, by simple combinatorial reasoning. If the probablity of the "left-hand" subsystem being in |00> is 1/4, and the probablity of the "right-hand" subsystem being in |101> is 1/8, than the probability of the combined |00101> permutation state is 1/32, and so on for all permutations of the new combined state.

If the programmer doesn't want to "cheat" quantum mechanically, then the original copy of the state which is duplicated into the larger QInterface should be "thrown away" to satisfy "no clone theorem." This is not semantically enforced in Qrack, because optimization of an emulator might be acheived by "cloning" "under-the-hood" while only exposing a quantum mechanically consistent API or instruction set.

Returns the quantum bit offset that the QInterface was appended at, such that bit 5 in toCopy is equal to offset+5 in this object.

Reimplemented from Qrack::QInterface.

◆ Compose() [4/5]

bitLenInt Qrack::QEngineCPU::Compose ( QInterfacePtr  toCopy,
bitLenInt  start 
)
inlinevirtual

Compose() a QInterface peer, inserting its qubit into index order at start index.

Reimplemented from Qrack::QInterface.

◆ Compose() [5/5]

std::map< QInterfacePtr, bitLenInt > Qrack::QEngineCPU::Compose ( std::vector< QInterfacePtr toCopy)
virtual

Combine (copies) each QEngineCPU in the vector with this one, after the last bit index of this one.

(If the programmer doesn't want to "cheat," it is left up to them to delete the old unit that was added.

Returns a mapping of the index into the new QEngine that each old one was mapped to.

Reimplemented from Qrack::QInterface.

◆ CopyStateVec()

void Qrack::QEngineCPU::CopyStateVec ( QEnginePtr  src)
virtual

Exactly copy the state vector of a different QEngine instance.

Implements Qrack::QEngine.

◆ Decompose() [1/4]

virtual QInterfacePtr Qrack::QEngine::Decompose
inline

◆ Decompose() [2/4]

virtual QInterfacePtr Qrack::QInterface::Decompose

Schmidt decompose a length of qubits.

◆ Decompose() [3/4]

void Qrack::QEngineCPU::Decompose ( bitLenInt  start,
QInterfacePtr  dest 
)
virtual

Minimally decompose a set of contiguous bits from the separably composed unit, into "destination".

Minimally decompose a set of contigious bits from the separably composed unit. The length of this separable unit is reduced by the length of bits decomposed, and the bits removed are output in the destination QInterface pointer. The destination object must be initialized to the correct number of bits, in 0 permutation state. For quantum mechanical accuracy, the bit set removed and the bit set left behind should be quantum mechanically "separable."

Like how "Compose" is like "just setting another group of qubits down next to the first," if two sets of qubits are not entangled, then "Decompose" is like "just moving a few qubits away from the rest." Schroedinger's equation does not require bits to be explicitly interacted in order to describe their permutation basis, and the descriptions of state of separable subsystems, those which are not entangled with other subsystems, are just as easily removed from the description of state. (This is equivalent to a "Schmidt decomposition.")

If we have for example 5 qubits, and we wish to separate into "left" and "right" subsystems of 3 and 2 qubits, we sum probabilities of one permutation of the "left" three over ALL permutations of the "right" two, for all permutations, and vice versa, like so:

\( P(|1000>|xy>) = P(|1000 00>) + P(|1000 10>) + P(|1000 01>) + P(|1000 11>). \)

If the subsystems are not "separable," i.e. if they are entangled, this operation is not well-motivated, and its output is not necessarily defined. (The summing of probabilities over permutations of subsytems will be performed as described above, but this is not quantum mechanically meaningful.) To ensure that the subsystem is "separable," i.e. that it has no entanglements to other subsystems in the QInterface, it can be measured with M(), or else all qubits other than the subsystem can be measured.

Implements Qrack::QInterface.

◆ Decompose() [4/4]

virtual void Qrack::QInterface::Decompose

Minimally decompose a set of contiguous bits from the separably composed unit, into "destination".

Minimally decompose a set of contigious bits from the separably composed unit. The length of this separable unit is reduced by the length of bits decomposed, and the bits removed are output in the destination QInterface pointer. The destination object must be initialized to the correct number of bits, in 0 permutation state. For quantum mechanical accuracy, the bit set removed and the bit set left behind should be quantum mechanically "separable."

Like how "Compose" is like "just setting another group of qubits down next to the first," if two sets of qubits are not entangled, then "Decompose" is like "just moving a few qubits away from the rest." Schroedinger's equation does not require bits to be explicitly interacted in order to describe their permutation basis, and the descriptions of state of separable subsystems, those which are not entangled with other subsystems, are just as easily removed from the description of state. (This is equivalent to a "Schmidt decomposition.")

If we have for example 5 qubits, and we wish to separate into "left" and "right" subsystems of 3 and 2 qubits, we sum probabilities of one permutation of the "left" three over ALL permutations of the "right" two, for all permutations, and vice versa, like so:

\( P(|1000>|xy>) = P(|1000 00>) + P(|1000 10>) + P(|1000 01>) + P(|1000 11>). \)

If the subsystems are not "separable," i.e. if they are entangled, this operation is not well-motivated, and its output is not necessarily defined. (The summing of probabilities over permutations of subsytems will be performed as described above, but this is not quantum mechanically meaningful.) To ensure that the subsystem is "separable," i.e. that it has no entanglements to other subsystems in the QInterface, it can be measured with M(), or else all qubits other than the subsystem can be measured.

◆ DecomposeDispose()

void Qrack::QEngineCPU::DecomposeDispose ( bitLenInt  start,
bitLenInt  length,
QEngineCPUPtr  destination 
)
protected

Minimally decompose a set of contigious bits from the separable unit.

The length of this separable unit is reduced by the length of bits decomposed, and the bits removed are output in the destination QEngineCPU pointer. The destination object must be initialized to the correct number of bits, in 0 permutation state.

◆ Dispatch()

void Qrack::QEngineCPU::Dispatch ( bitCapIntOcl  workItemCount,
DispatchFn  fn 
)
inlineprotected

◆ Dispose() [1/2]

void Qrack::QEngineCPU::Dispose ( bitLenInt  start,
bitLenInt  length 
)
virtual

Minimally decompose a set of contiguous bits from the separably composed unit, and discard the separable bits from index "start" for "length.".

Minimally decompose a set of contigious bits from the separably composed unit. The length of this separable unit is reduced by the length of bits decomposed, and the bits removed are output in the destination QInterface pointer. The destination object must be initialized to the correct number of bits, in 0 permutation state. For quantum mechanical accuracy, the bit set removed and the bit set left behind should be quantum mechanically "separable."

Like how "Compose" is like "just setting another group of qubits down next to the first," if two sets of qubits are not entangled, then "Decompose" is like "just moving a few qubits away from the rest." Schroedinger's equation does not require bits to be explicitly interacted in order to describe their permutation basis, and the descriptions of state of separable subsystems, those which are not entangled with other subsystems, are just as easily removed from the description of state. (This is equivalent to a "Schmidt decomposition.")

If we have for example 5 qubits, and we wish to separate into "left" and "right" subsystems of 3 and 2 qubits, we sum probabilities of one permutation of the "left" three over ALL permutations of the "right" two, for all permutations, and vice versa, like so:

\( P(|1000>|xy>) = P(|1000 00>) + P(|1000 10>) + P(|1000 01>) + P(|1000 11>). \)

If the subsystems are not "separable," i.e. if they are entangled, this operation is not well-motivated, and its output is not necessarily defined. (The summing of probabilities over permutations of subsytems will be performed as described above, but this is not quantum mechanically meaningful.) To ensure that the subsystem is "separable," i.e. that it has no entanglements to other subsystems in the QInterface, it can be measured with M(), or else all qubits other than the subsystem can be measured.

Implements Qrack::QInterface.

◆ Dispose() [2/2]

void Qrack::QEngineCPU::Dispose ( bitLenInt  start,
bitLenInt  length,
const bitCapInt disposedPerm 
)
virtual

Dispose a a contiguous set of qubits that are already in a permutation eigenstate.

Implements Qrack::QInterface.

◆ Dump()

void Qrack::QEngineCPU::Dump ( )
inlinevirtual

If asynchronous work is still running, let the simulator know that it can be aborted.

Note that this method is typically used internally where appropriate, such that user code typically does not call Dump().

Reimplemented from Qrack::QInterface.

◆ Finish()

void Qrack::QEngineCPU::Finish ( )
inlinevirtual

If asynchronous work is still running, block until it finishes.

Note that this is never necessary to get correct, timely return values. QEngines and other layers will always internally "Finish" when necessary for correct return values. This is primarily for debugging and benchmarking.

Reimplemented from Qrack::QInterface.

◆ FirstNonzeroPhase()

real1_f Qrack::QEngineCPU::FirstNonzeroPhase ( )
inlinevirtual

Get phase of lowest permutation nonzero amplitude.

Reimplemented from Qrack::QInterface.

◆ FreeStateVec()

void Qrack::QEngineCPU::FreeStateVec ( complex sv = NULL)
inline

◆ GetAmplitude()

complex Qrack::QEngineCPU::GetAmplitude ( const bitCapInt perm)
virtual

Get the representational amplitude of a full permutation.

Warning
PSEUDO-QUANTUM

Implements Qrack::QInterface.

◆ GetAmplitudePage()

void Qrack::QEngineCPU::GetAmplitudePage ( complex pagePtr,
bitCapIntOcl  offset,
bitCapIntOcl  length 
)
virtual

Copy a "page" of amplitudes from this QEngine's internal state, into pagePtr.

Implements Qrack::QEngine.

◆ GetExpectation()

real1_f Qrack::QEngineCPU::GetExpectation ( bitLenInt  valueStart,
bitLenInt  valueLength 
)
protectedvirtual

Implements Qrack::QEngine.

◆ GetProbs()

void Qrack::QEngineCPU::GetProbs ( real1 outputProbs)
virtual

Get all probabilities, in unsigned int permutation basis.

Implements Qrack::QInterface.

◆ GetQuantumState()

void Qrack::QEngineCPU::GetQuantumState ( complex outputState)
virtual

Get pure quantum state, in unsigned int permutation basis.

Implements Qrack::QInterface.

◆ INCDECBCDC()

void Qrack::QEngineCPU::INCDECBCDC ( const bitCapInt toMod,
bitLenInt  inOutStart,
bitLenInt  length,
bitLenInt  carryIndex 
)
protectedvirtual

Add BCD integer (without sign, with carry)

Implements Qrack::QAlu.

◆ INCDECC()

void Qrack::QEngineCPU::INCDECC ( const bitCapInt toMod,
bitLenInt  inOutStart,
bitLenInt  length,
bitLenInt  carryIndex 
)
protectedvirtual

Add integer (without sign, with carry)

Reimplemented from Qrack::QEngine.

◆ INCDECSC() [1/2]

void Qrack::QEngineCPU::INCDECSC ( const bitCapInt toMod,
bitLenInt  start,
bitLenInt  length,
bitLenInt  carryIndex 
)
protectedvirtual

Common driver method behind INCSC and DECSC (without overflow flag)

Implements Qrack::QAlu.

◆ INCDECSC() [2/2]

void Qrack::QEngineCPU::INCDECSC ( const bitCapInt toMod,
bitLenInt  start,
bitLenInt  length,
bitLenInt  overflowIndex,
bitLenInt  carryIndex 
)
protectedvirtual

Common driver method behind INCSC and DECSC (with overflow flag)

Implements Qrack::QAlu.

◆ isFinished()

bool Qrack::QEngineCPU::isFinished ( )
inlinevirtual

Returns "false" if asynchronous work is still running, and "true" if all previously dispatched asynchronous work is done.

Reimplemented from Qrack::QInterface.

◆ IsZeroAmplitude()

bool Qrack::QEngineCPU::IsZeroAmplitude ( )
inlinevirtual

Returns "true" only if amplitudes are all totally 0.

Implements Qrack::QEngine.

◆ ModNOut()

void Qrack::QEngineCPU::ModNOut ( const MFn kernelFn,
const bitCapInt modN,
const bitLenInt inStart,
const bitLenInt outStart,
const bitLenInt length,
const bool &  inverse = false 
)
protected

◆ MULDIV()

void Qrack::QEngineCPU::MULDIV ( const IOFn inFn,
const IOFn outFn,
const bitCapInt toMul,
const bitLenInt inOutStart,
const bitLenInt carryStart,
const bitLenInt length 
)
protected

◆ PhaseParity()

void Qrack::QEngineCPU::PhaseParity ( real1_f  radians,
const bitCapInt mask 
)
virtual

Parity phase gate.

Applies e^(i*angle) phase factor to all combinations of bits with odd parity, based upon permutations of qubits.

Reimplemented from Qrack::QInterface.

◆ PhaseRootNMask()

void Qrack::QEngineCPU::PhaseRootNMask ( bitLenInt  n,
const bitCapInt mask 
)
virtual

Masked PhaseRootN gate.

Applies a -2 * PI_R1 / (2^N) phase rotation to each qubit in the mask.

Reimplemented from Qrack::QInterface.

◆ QueueSetDoNormalize()

void Qrack::QEngineCPU::QueueSetDoNormalize ( bool  doNorm)
inlinevirtual

Add an operation to the (OpenCL) queue, to set the value of doNormalize, which controls whether to automatically normalize the state.

Implements Qrack::QEngine.

◆ QueueSetRunningNorm()

void Qrack::QEngineCPU::QueueSetRunningNorm ( real1_f  runningNrm)
inlinevirtual

Add an operation to the (OpenCL) queue, to set the value of runningNorm, which is the normalization constant for the next normalization operation.

Implements Qrack::QEngine.

◆ ResetStateVec()

void Qrack::QEngineCPU::ResetStateVec ( StateVectorPtr  sv)
inlineprotected

◆ SetAmplitude()

void Qrack::QEngineCPU::SetAmplitude ( const bitCapInt perm,
const complex amp 
)
virtual

Sets the representational amplitude of a full permutation.

Warning
PSEUDO-QUANTUM

Implements Qrack::QInterface.

◆ SetAmplitudePage() [1/2]

void Qrack::QEngineCPU::SetAmplitudePage ( const complex pagePtr,
bitCapIntOcl  offset,
bitCapIntOcl  length 
)
virtual

Copy a "page" of amplitudes from pagePtr into this QEngine's internal state.

Implements Qrack::QEngine.

◆ SetAmplitudePage() [2/2]

void Qrack::QEngineCPU::SetAmplitudePage ( QEnginePtr  pageEnginePtr,
bitCapIntOcl  srcOffset,
bitCapIntOcl  dstOffset,
bitCapIntOcl  length 
)
virtual

Copy a "page" of amplitudes from another QEngine, pointed to by pageEnginePtr, into this QEngine's internal state.

Implements Qrack::QEngine.

◆ SetDevice()

void Qrack::QEngineCPU::SetDevice ( int64_t  dID)
inlinevirtual

Set GPU device ID.

Reimplemented from Qrack::QEngine.

◆ SetQuantumState()

void Qrack::QEngineCPU::SetQuantumState ( const complex inputState)
virtual

Set arbitrary pure quantum state, in unsigned int permutation basis.

Implements Qrack::QInterface.

◆ ShuffleBuffers()

void Qrack::QEngineCPU::ShuffleBuffers ( QEnginePtr  engine)
virtual

Swap the high half of this engine with the low half of another.

This is necessary for gates which cross sub-engine boundaries.

Implements Qrack::QEngine.

◆ UpdateRunningNorm()

void Qrack::QEngineCPU::UpdateRunningNorm ( real1_f  norm_thresh = REAL1_DEFAULT_ARG)
protectedvirtual

Force a calculation of the norm of the state vector, in order to make it unit length before the next probability or measurement operation.

(On an actual quantum computer, the state should never require manual normalization.)

Warning
PSEUDO-QUANTUM

Implements Qrack::QInterface.

◆ XMask()

void Qrack::QEngineCPU::XMask ( const bitCapInt mask)
virtual

Masked X gate.

Applies the Pauli "X" operator to all qubits in the mask. A qubit index "n" is in the mask if (((1 << n) & mask)

0). The Pauli "X" operator is equivalent to a logical "NOT."

Reimplemented from Qrack::QInterface.

◆ ZeroAmplitudes()

void Qrack::QEngineCPU::ZeroAmplitudes ( )
inlinevirtual

Set all amplitudes to 0, and optionally temporarily deallocate state vector RAM.

Implements Qrack::QEngine.

Member Data Documentation

◆ isSparse

bool Qrack::QEngineCPU::isSparse
protected

◆ stateVec

StateVectorPtr Qrack::QEngineCPU::stateVec
protected

The documentation for this class was generated from the following files: